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Section |: Stochastic mean payoff
games and entropy games
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Stochastic mean payoff games (SMPGs)

There are two players, Max and Min, who move a pawn on a
directed graph G = (V,E) as above Min decides the move at

square states (here Vg, = { } ) and Max decides the

move at circle states (here VMax = {@ @ @})

The states marked with dots, denoted Vat, are controlled by
Nature, who is not a rational player.

In our setting, the graph is tripartite: players move in order Min —
Max — Nature — Min — Max — Nature — ...
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Stochastic mean payoff games (SMPGs)

A strategy of player Min is a function that, to any finite history of
the play (path taken by the pawn) that ends at a node controlled
by Min, associates the next state. Analogously for player Max.

In a SMPG, we suppose that Nature makes decision at random,
according to a (fixed) probability distribution at any given state.
(In the figure: take (1/2,1/2) at any state.)

The numbers on the edges indicate the amount of money that Min
pays to Max when the pawn goes through a given edge. In our
setting: rewards are integer.
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Stochastic mean payoff games (SMPGs)

We suppose that the game is played for infinite time. In this case,
the sum of payoffs may be undefined.

We consider the mean-payoff criterion: Max wants to maximize
the quantity

1
gi,(0,7) = liminf NIEJU,T(r,-O,-1 + o iy i) s

Nosoo

where (o, 7T) is a pair of strategies (giving a probability distribution
on possible paths of length N), ry are the rewards, and ip € Wgin
is the initial state.
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Entropy games (EG)

In an entropy game, Min is called “Despot”, Max is called
“Tribune”, and Nature is called “People”.

Nature is nondeterministic — we do not assume anything about its
behavior.

Each edge controlled by People is equipped with a positive integer
called multiplicity. There are no weights on other edges.
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Entropy games (EG)

Given (0, 7) we denote by R](c, ) the number of paths (counting
multiplicities) that the pawn can make in horizon N, starting from
io € WMin-

Tribune wants to maximize

gio(U, 7') = lim sup(,‘{’l{)\’(a7 7.))1/N .

N—o0

The logarithm of this quantity is the topological entropy.
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Existence of optimal strategies

Theorem (Liggett and Lippman, 1969; Akian, Gaubert,

Grand-Clément, et al., 2019)

For every SMPG and every EG, there exists a couple of strategies
(7,7) and a vector n € RY™in such that the inequality

gi(5>7—) <ni < g,-(a,?)

is true for all states i € Vanin and all policies (o, 7). The vector n is
called the value of the game, and the strategies (7, T) are called
optimal. The value is unique.

Furthermore, there exist optimal strategies which are memoryless,
i.e., they depend only on the current position of the pawn.
Memoryless strategies are called policies.

X. Allamigeon, S. Gaubert, R. D. Katz, M. Skomra Universal complexity bounds for value iteration



Complexity questions

Theorem (Condon, 1992; Asarin et al., 2016)

Given a SMPG or an EG and a number oo € Q, the problem of
deciding if max; n; < a belongs to NP N coNP.

@ Neither problem is known to be in P.

@ For SMPG: open for >30 years, generalizes parity games.
o Closely related: find optimal policies of both players.

@ For EG: we do not know how to solve Tribune-free games.

Theorem (Gimbert and Horn, 2008)

Simple stochastic games (subclass of SMPG) with fixed number of
significant Nature states can be solved in polynomial time.

v

Theorem (Akian, Gaubert, Grand-Clément, et al., 2019)

EGs with fixed number of significant Despot states can be solved
in polynomial time.

.

“Significant” = at least two outgoing edges.
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Our contribution

For a SMPG, we can find its top class (all states of maximal value)
and a pair of optimal policies on top class in O(|V|*| E|WM3K)
complexity.

Notation: K is the number of significant Nature states, M is the
common denominator of all the probabilities, and W is the highest
absolute value of any reward.

Note that the bound is pseudopolynomial for fixed K.

EGs with fixed number of People states can be solved in
pseudopolynomial time.

To do so, we develop a unified approach to bound complexity of
value iteration, which is (arguably) the simplest nontrivial
algorithm for solving these games.
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Section Il: Shapley operators and
value iteration
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Shapley operators of SMPGs

Consider the Shapley operator F: RV:in — R Vatin:
(F(x))i = (m)lnE<r,-s —|—(ml)axE rs + Z Pl X; )
JEVI\/Im

where rjs, rg are the payoffs obtained by going from i € Wy, to
s € Wiax and from s to | € Vat, and pj; is the probability of
going from / to j € Wtin.

Lemma (folklore)

FN(0) is the value vector of a SMPG that lasts N turns.

Theorem (Mertens and Neyman, 1981)

The value is equal to the escape rate x(F) = limy FN(0)/N.

Observation

F is monotone, x <y = F(x) <
F is additively homogenous, F(\ + x
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Shapley operators of EGs

Consider the operator T : RZI\O/“" N ngin

T = mi .
( (X)) (,-f?)lgE (Srj]/)aé(Eje%in Y

and let F(x) :=logoT oexp (coordinatewise log and exp).

Theorem (Akian, Gaubert, Grand-Clément, et al., 2019)

TN(1,...,1) is the value of an EG that lasts N turns. Moreover,
the escape rate of F exists and is equal to the logarithm of the
value vector.

Observation
F is monotone and additively homogenous.

Lemma (Akian, Gaubert, Grand-Clément, et al., 2019)

Given any € > 0 we can build an approximation oracle for F,
[1F(x) = F(x)lloo <.
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Collatz—Wielandt certificates

Our approach is based on Collatz—Wielandt certificates.
Suppose that u € RY;, satisfies A + u < F(u) for A € R. Then,

NX+u<FN(u) forall N>1

and so min x; > A. Analogously, A + u > F(u) gives max x; < \.
Moreover, such certificates exist:

Theorem (Akian, Gaubert, and Guterman, 2012)

Let F: R" — R" be a monotone and additively homogeneous
operator that has an escape rate x. Moreover, suppose that y;
does not depend on the choice of i. Then,

x1=sup{A e R: Ju e R" A+ u < F(u)}
=inf{AeR: weR" A+u>F(u)}.
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Condition number

We introduce a condition number based on Collatz—Wielandt
certificates.

For x € R" denote t(x) := max; x;, b(x) := min; x;, and
lIx||z = t(x) — b(x) (Hilbert seminorm).

Definition (Condition number)

For any 6 > 0 we put Rs .= max{R;", R; }, where
R = inf{|jullu: F(u) < x1+0+ u},
Ry =inf{||ullm: xa —0+u< F(u)}.
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Approximating constant value

We have the following approximation algorithm for any ¢ > 0.

Algorithm to approximate a constant value

Suppose t~h3t the value yx is constant. LetNI-: be suchﬂthat
|F(x) — F(x)||oo < 0/8. Compute F(0), F2(0), ..., FN(0) until

t(FY(0)) — b(F"(0))
N

< (3/4).
Then, the value belongs to the interval

[~5/8 + b(FY(0))/N,6/8 + t(FY(0))/N],

which is of width at most .

The algorithm is correct and stops in at most [8R;/g/d] iterations.
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Deciding if value is constant
Algorithm to detect if value is constant

Let F be such that |F(x)— I-Z(X)Hoo < 0/8. Compute
F(0), F2(0),..., FN(0) until
t(F"(0)) — b(FY(0))
N

< (3/4)0

or N =1+ [8Rjs/g/0]. In the first case, declare that the value is
constant. Otherwise, take any i such that FV(0); = b(F"(0)) and
declare that this state does not belong to the top class, x; < t(x)-

The algorithm above is correct as soon as
° t(x) = b(x) ort(x) —b(x) >4,
@ Rjs/g is the condition number of the operator on top class,

e F satisfies an additional technical assumption (which is true
for SMPGs and EGs).
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Finding top class

Given i such that x; < t(x), we can “extend” it to a group of
states that does not belong to the top class. By repeatedly
removing such groups from the graph, we can find the top class.

Let § > 0 be a number such that t(x') — b(x!) > & for all
subgames I that strictly contain the top class. Then, the top class
can be found by making at most n?> 4+ n[8R./d] calls to an oracle
that approximates F to precision € == §/8.

For EGs, we can go even further.

Algorithm for solving entropy games

Find the top class. Remove it from the graph and repeat on the
smaller game.

Note: removing the top class does not work for SMPGs.

X. Allamigeon, S. Gaubert, R. D. Katz, M. Skomra Universal complexity bounds for value iteration



Complexity estimates for SMPGs

Notation: K is the number of significant Nature states, M is the
common denominator of all the probabilities, and W is the highest
absolute value of any reward.

Proposition

For a constant value game, the denominator of x € Q is at most
[VIMK and ||Rs||g < 4|V|WMK for any § > 0.

We can find the top class and a pair of optimal policies on top
class in O(|V [*|E|WM3K) complexity.

An algorithm of Boros et al. (2019) solves the same problem in
O(| V|8 |E|WK2K M*K 1 |V |3|E|W log W) complexity.

They also show how an oracle to top class + an oracle to solving
deterministic MPGs can be used to solve general SMPGs in
poly(| V|, log W)W(|V|KM)OK) complexity.
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Complexity estimates of EGs

Notation: P is the number of People states, W is the highest
multiplicity of an edge.

Every eXi s an algebraic number of degree at most P. In
particular, if t(x) # b(x), then t(x) — b(x) > poly(|V|, W)~F* for
some polynomial poly.

We have ||Rs||g < 1200|V|?(|V|log W — logd) for all 0 < & < 1.

We can solve EGs in poly(| V|, |E|, W)P* complexity.

Here, “solve” means find optimal policies of both players and
express the value at each state as a unique root of a univariate
polynomial that belongs to some interval.
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Questions for further study

Can Tribune-free entropy games be solved in
(pseudo)polynomial time? What about games with limited
number of significant People states?

What can we get by applying this approach to SMPGs with
imperfect information or other mean-payoff games with more
complicated strategy sets?

Are there policy iteration algorithms that achieve similar
bounds for EGs and SPMGs? (We have such algorithms for
SSGs.)

How to exploit the properties of the graph to get better
algorithms?

Can we simplify the approach of Boros et al. (2019) showing
that general stochastic mean payoff games are solvable in
pseudopolynomial time when the number of significant Nature
states is fixed?
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Thank you for your attention

X. Allamigeon et al. “Universal Complexity Bounds Based on Value
Iteration and Application to Entropy Games". In: 49th
International Colloquium on Automata, Languages, and
Programming (ICALP 2022), 110:1-110:20
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