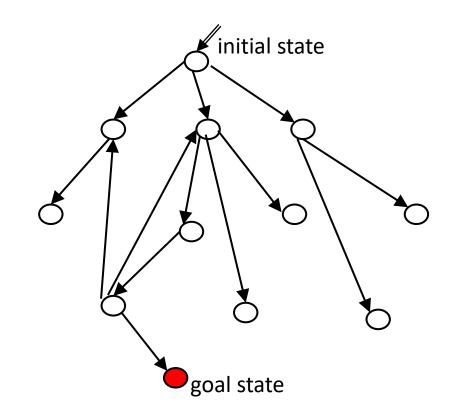
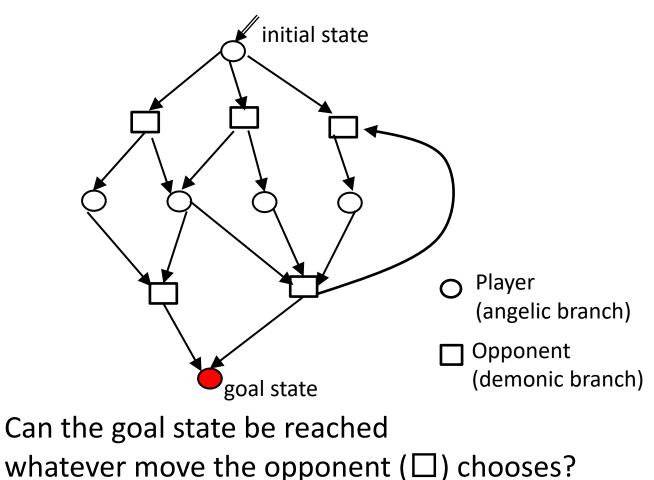
On Higher-Order Reachability Games vs May Reachability

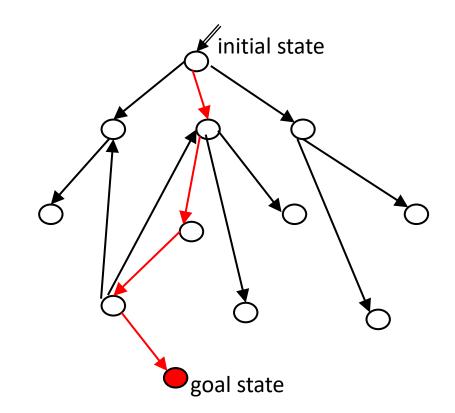
Kazuyuki Asada Tohoku University

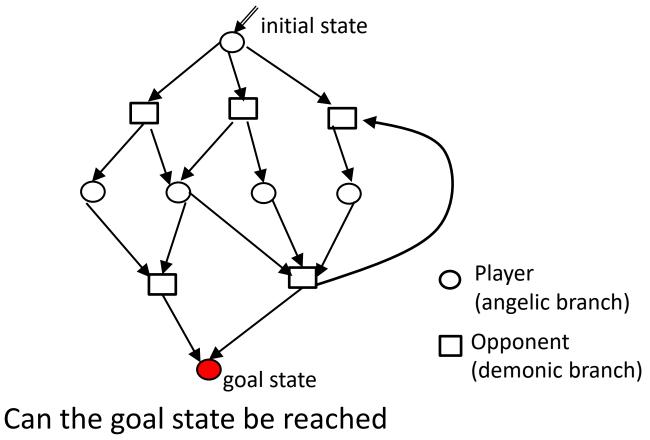
Hiroyuki Katsura Naoki Kobayashi The University of Tokyo





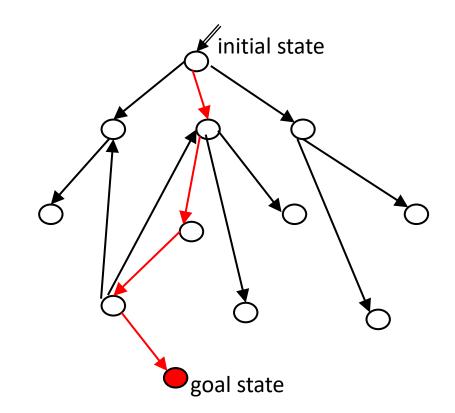
Does there exists a path to the goal state?

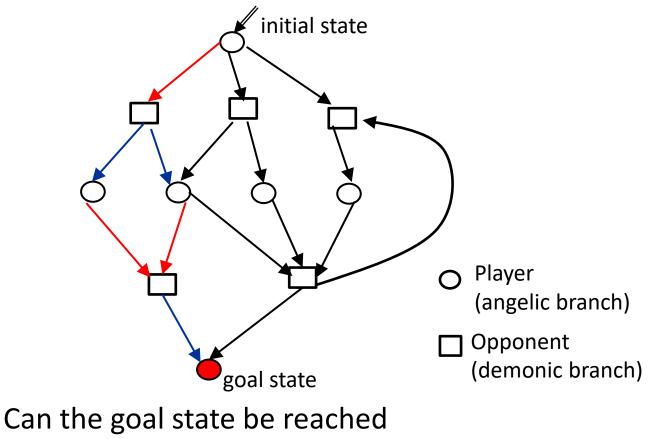




Does there exists a path to the goal state?

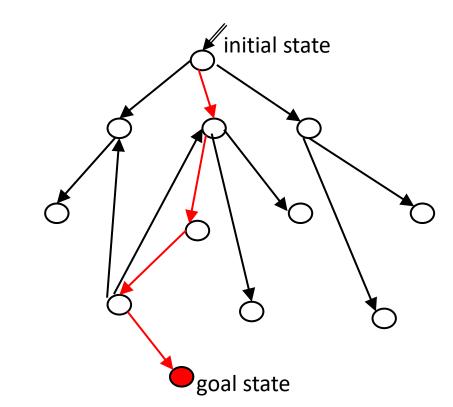
whatever move the opponent (\Box) chooses?

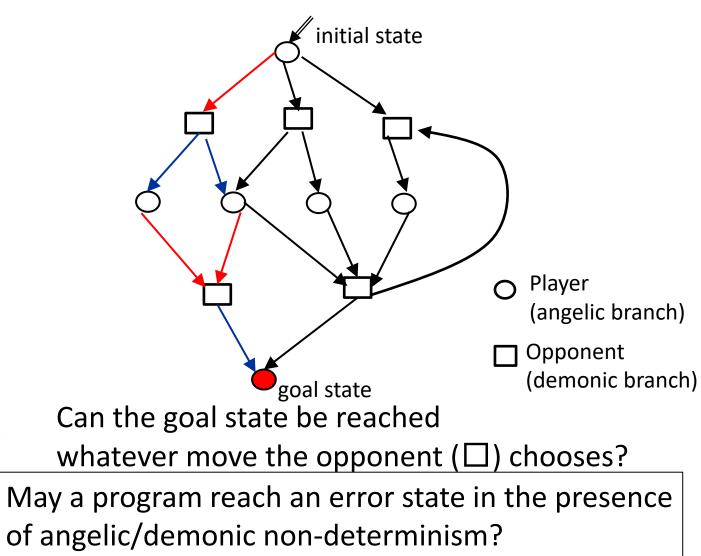




Does there exists a path to the goal state?

whatever move the opponent (\Box) chooses?





Does there exists a path to the goal state?

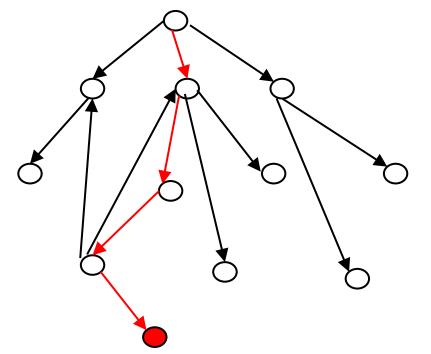
Does a program reach an error state?

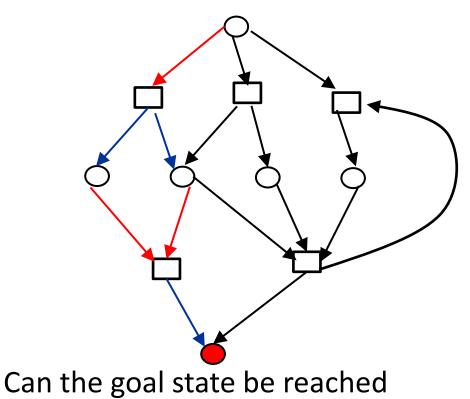
Does a program always terminate?

Our Result

For reachability games generated by higher-order call-by-name functional programs, order-(n+1) may-reachability \approx order-n reachability games

order-0: functions may take only integer arguments order-(n+1): functions may take order-n functions





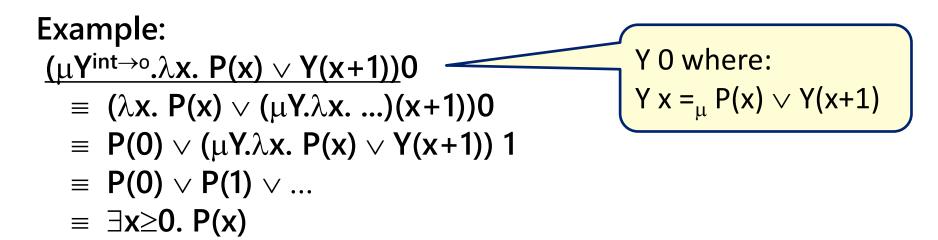
Does there exists a path to the goal state?

whatever move the opponent (\Box) chooses?

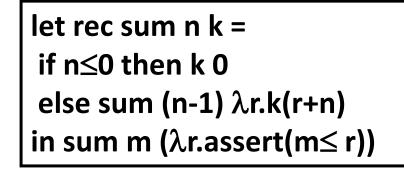
Outline

- **ΦμHFL(Z)** and higher-order reachability games
- From order-n reachability games to order-(n+1) may-reachability
- From order-(n+1) may-reachability to order-n reachability games
- ♦ Applications
- Related work and conclusion

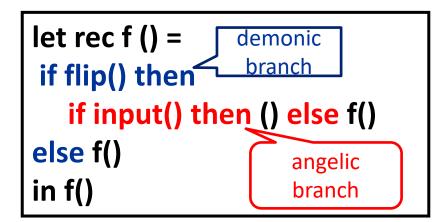
µHFL(Z): higher-order logic with integers and least fixpoints (HFL [Viswanathan&Viswanathan 04] – $(v, \langle a \rangle, [a])$ + integers) φ ::= true | $\varphi_1 \land \varphi_2$ | $\varphi_1 \lor \varphi_2$ | X | $\mu X^{\kappa}.\varphi$ | $\lambda X^{\tau}.\varphi$ | $\varphi_1 \varphi_2$ $| \phi \mathbf{e} | \mathbf{e}_1 \leq \mathbf{e}_2$ The least X s.t. X = Q $e ::= n | X | e_1 + e_2 | e_1 \times e_2$ $\kappa ::= o | \tau \rightarrow \kappa \qquad \tau ::= \kappa | int$ order(o) = 0 order(int) = -1 order($\tau \rightarrow \kappa$) = max(1+order(τ), order(κ)) e.g. order(int \rightarrow int \rightarrow o) = 0, order((int \rightarrow o) \rightarrow o) = 1 order(ϕ) := the largest order(κ) such that $\mu X^{\kappa} \phi$ occurs in ϕ



Reachability games as µHFL(Z) formulas



May an assertion failure occur?



Does the program always terminate if an appropriate input is given from the environment?

Sum m (λ r. m>r) where Sum n k =_µ (n≤0 ∧ k 0) ∨ (n>0 ∧ Sum (n-1) λ r.k(r+n))

Is the formula valid? (Answer: No)

where

F

 $F =_{\mu} (true \lor F) \land F$

Is the formula valid? (Answer: No)

Disjunctive µHFL(Z)

$$\begin{split} \phi &::= \text{true } \mid \boldsymbol{e_1} \leq \boldsymbol{e_2} \land \phi \mid \phi_1 \lor \phi_2 \mid X \mid \mu X^{\kappa}.\phi \mid \lambda X^{\tau}.\phi \mid \phi_1 \phi_2 \\ \mid \phi \boldsymbol{e} \mid \boldsymbol{e_1} \leq \boldsymbol{e_2} \\ \boldsymbol{e} &::= \boldsymbol{n} \mid X \mid \boldsymbol{e_1} + \boldsymbol{e_2} \mid \boldsymbol{e_1} \times \boldsymbol{e_2} \\ \kappa ::= \boldsymbol{o} \mid \tau \rightarrow \kappa \quad \tau ::= \kappa \mid \text{int} \end{split}$$

Disjunctive

Sum m (λ r. m>r) where Sum n k =_µ (n≤0 ∧ k 0) ∨ (n>0 ∧ Sum (n-1) λ r.k(r+n)) Non-disjunctive

F

where

 $F =_{\mu} (true \lor F) \land F$

Main Result

There exist size- and semantics-preserving translations between order-n closed μ HFL(Z) formulas (i.e., order-n reachability games) and

order-(n+1) closed disjunctive µHFL(Z) formulas (i.e., order-(n+1) may-reachability).

e.g.

order-0 $\exists y. (\mu S. \lambda n.\lambda x.(n \le 0 \land m=0) \lor (n>0 \land \exists r.S (n-1) r \land x=r+n)) m y$ $\land m>y$ $\exists y. (\mu S. \lambda n.\lambda x.\lambda b. (n \le 0 \land m=0) \lor (n>0 \land m=0) \lor (n>0 \land \exists r.S (n-1) r (x=r+n \land b)) m y (m>y)$

Outline

- **♦** μHFL(Z) and higher-order reachability games
- From order-n reachability games to order-(n+1) may-reachability
- From order-(n+1) may-reachability to order-n reachability games
- ♦ Applications
- Related work and conclusion

From order-n reachability games to order-(n+1) may-reachability

• Idea: translate a truth value b to $\lambda x.b \wedge x$

$$\begin{split} & \mu \mathsf{HFL}(\mathsf{Z}): \\ & \phi ::= \mathsf{true} \mid \phi_1 \land \phi_2 \quad \mid \phi_1 \lor \phi_2 \quad \mid \mathsf{X} \mid \mu \mathsf{X}^{\kappa}.\phi \mid \lambda \mathsf{X}^{\tau}.\phi \mid \phi_1 \phi_2 \mid \phi e \mid e_1 \leq e_2 \\ & \mathsf{Disjunctive} \ \mu \mathsf{HFL}(\mathsf{Z}): \\ & \phi ::= \mathsf{true} \mid e_1 \leq e_2 \land \phi \mid \phi_1 \lor \phi_2 \quad \mid \mathsf{X} \mid \mu \mathsf{X}^{\kappa}.\phi \mid \lambda \mathsf{X}^{\tau}.\phi \mid \phi_1 \phi_2 \mid \phi e \mid e_1 \leq e_2 \end{split}$$

Outline

- **♦** µHFL(Z) and higher-order reachability games
- From order-n reachability games to order-(n+1) may-reachability
- From order-(n+1) may-reachability to order-n reachability games
 - From order-1 to order-0
 - General case
- ♦ Applications
- Related work and conclusion

From Order-1 May Rechability to Order-0 Rechability Game

♦ Consider:

 ϕ m p₁ ... p_k where: ϕ : int \rightarrow (int \rightarrow o)^k \rightarrow o, m:int, p_i : int \rightarrow o. ϕ m p₁ ... p_k \rightarrow * true if (1) ϕ m (λ x.false) ... (λ x.false) \rightarrow^* true; or (2) ϕ m p₁ ... p_k \rightarrow^* p_i n \rightarrow^* true for some i, n. Let $\varphi_0 \mathbf{m} \Leftrightarrow \varphi \mathbf{m}$ ($\lambda \mathbf{x}$.false) ... ($\lambda \mathbf{x}$.false) $\phi_i m n \Leftrightarrow \phi m p_1 \dots p_k \rightarrow^* p_i n.$ Then ϕ m p₁ ... p_k is equivalent to the order-0 formula: $\varphi_0 \mathbf{m} \vee \exists \mathbf{n}. (\varphi_1 \mathbf{m} \mathbf{n} \land \mathbf{p}_1 \mathbf{n}) \vee ... \vee \exists \mathbf{n}. (\varphi_k \mathbf{m} \mathbf{n} \land \mathbf{p}_k \mathbf{n})$

From Order-1 May Rechability to Order-0 Rechability Game

• Example: sum n (λ r. r<n) where:

sum x k =_{μ} x<0 \vee (x=0 \wedge k 1) \vee (x>0 \wedge sum (x-1) (λ r.k(r×n)))

Equivalent order-0 formula:

 $sum_{0} n \lor \exists r.(sum_{1} \times r \land r < n)$ where: condition for sum x k \rightarrow * true (without using k) $sum_{0} \times =_{\mu} \times \langle 0 \lor (x > 0 \land sum_{0} (x - 1))$ $sum_{1} \times y =_{\mu} (x = 0 \land y = 1) \lor (x > 0 \land \exists r. sum_{1} (x - 1) r \land y = r \times n)$ condition for sum x k \rightarrow * ky

Transformation Relation (for the General Case)

$$\begin{split} & \left(\begin{array}{c} \mathbf{f}_{1}, \dots, \mathbf{x}_{k} \right) - \mathbf{\phi} : \tau \Rightarrow \left(\begin{array}{c} \mathbf{\phi}_{*}, \mathbf{\phi}_{0}, \\ \mathbf{\phi}_{1}, \dots, \mathbf{\phi}_{k}, \\ \mathbf{\phi}_{k+1}, \dots, \mathbf{\phi}_{k+m} \right) \\ & \text{order-0} \\ \text{free variables} \\ & \text{free variables} \\ &$$

Outline

- **♦** μHFL(Z) and higher-order reachability games
- From order-n reachability games to order-(n+1) may-reachability
- From order-(n+1) may-reachability to order-n reachability games
- Applications
- Related work and conclusion

Applications

- From order-n reachability games to order-(n+1) may reachability Improve the efficiency of vHFL(Z) Solver ReTHFL [Katsura+, APLAS 2020]

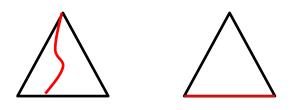
				•
Input	RETHFL	RETHFL+i.s.	RETHFL+ tr.	
fixpoint_nonterm	11.579	0.054	0.102	
unfoldr_nonterm	timeout	unknown	4.22	
indirect_e	16.832	0.035	0.066	
alternate	unknown	unknown	unknown	
fib_CPS_nonterm	timeout	0.047	0.075	
foldr_nonterm	8.447	unknown	0.122	
passing_cond	116.423	unknown	0.444	
indirectHO_e	11.582	0.044	0.073	
inf_closure	timeout	20.171	9.080	
loopHO	timeout	0.026	0.121	

After the translation from reachability games to mayreachability

From order-(n+1) may-reachability to reachability games
Helps us to avoid a limitation caused by the incompleteness of ReTHFL.

Related Work

- Order-(n+1) Word Languages = Order-n Frontier Languages (special case: context-free languages = frontier languages of regular tree grammars)
 - for safe grammars [Damm 1982]
 - for unsafe grammars [Asada&K, FSCD20]



- Order-n fixpoint characterization of order-(n+1) probabilistic higherorder recursive programs [K+, LICS19]
- n-EXPTIME completeness of disjunctive properties of order-(n+1) HORS [K&Ong, ICALP09]

Conclusion

• We have shown:

Order-(n+1) may reachability \approx **Order-n** reachability games

through fixpoint logic µHFL(Z)

Applications to vHFL(Z) solvers (higher-order extension of CHC solvers, which serve as common backend for higher-order program verification)