
1

The considered algorithms Our model The safety problem Results Conclusion

Parameterized safety verification of round-based
shared-memory systems

Nicolas Waldburger 1

Nathalie Bertrand 1, Nicolas Markey 1, Ocan Sankur 1

1Univ Rennes, Inria, CNRS, IRISA, France

RP22, 17th October 2022



2

The considered algorithms Our model The safety problem Results Conclusion

Round-based shared-memory algorithms

The distributed systems considered

Parallel, identical processes communicating via shared memory

Asynchrony: some processes might be faster than others

Non-atomic read & write combinations, no fault

Round-based: Fresh copy of registers at each round, processes can
be on different rounds

The binary consensus problem

Make all processes agree on a common value, each process having an
initial preference p. Desired properties of consensus algorithms:

Validity : If a process decides value p, some process started with
preference p.

Agreement : Two processes that decide decide of the same value.

Termination : All processes eventually decide of a value.



2

The considered algorithms Our model The safety problem Results Conclusion

Round-based shared-memory algorithms

The distributed systems considered

Parallel, identical processes communicating via shared memory

Asynchrony: some processes might be faster than others

Non-atomic read & write combinations, no fault

Round-based: Fresh copy of registers at each round, processes can
be on different rounds

The binary consensus problem

Make all processes agree on a common value, each process having an
initial preference p. Desired properties of consensus algorithms:

Validity : If a process decides value p, some process started with
preference p.

Agreement : Two processes that decide decide of the same value.

Termination : All processes eventually decide of a value.



2

The considered algorithms Our model The safety problem Results Conclusion

Round-based shared-memory algorithms

The distributed systems considered

Parallel, identical processes communicating via shared memory

Asynchrony: some processes might be faster than others

Non-atomic read & write combinations, no fault

Round-based: Fresh copy of registers at each round, processes can
be on different rounds

The binary consensus problem

Make all processes agree on a common value, each process having an
initial preference p. Desired properties of consensus algorithms:

Validity : If a process decides value p, some process started with
preference p.

Agreement : Two processes that decide decide of the same value.

Termination : All processes eventually decide of a value.



2

The considered algorithms Our model The safety problem Results Conclusion

Round-based shared-memory algorithms

The distributed systems considered

Parallel, identical processes communicating via shared memory

Asynchrony: some processes might be faster than others

Non-atomic read & write combinations, no fault

Round-based: Fresh copy of registers at each round, processes can
be on different rounds

The binary consensus problem

Make all processes agree on a common value, each process having an
initial preference p. Desired properties of consensus algorithms:

Validity : If a process decides value p, some process started with
preference p.

Agreement : Two processes that decide decide of the same value.

Termination : All processes eventually decide of a value.



2

The considered algorithms Our model The safety problem Results Conclusion

Round-based shared-memory algorithms

The distributed systems considered

Parallel, identical processes communicating via shared memory

Asynchrony: some processes might be faster than others

Non-atomic read & write combinations, no fault

Round-based: Fresh copy of registers at each round, processes can
be on different rounds

The binary consensus problem

Make all processes agree on a common value, each process having an
initial preference p. Desired properties of consensus algorithms:

Validity : If a process decides value p, some process started with
preference p.

Agreement : Two processes that decide decide of the same value.

Termination : All processes eventually decide of a value.



2

The considered algorithms Our model The safety problem Results Conclusion

Round-based shared-memory algorithms

The distributed systems considered

Parallel, identical processes communicating via shared memory

Asynchrony: some processes might be faster than others

Non-atomic read & write combinations, no fault

Round-based: Fresh copy of registers at each round, processes can
be on different rounds

The binary consensus problem

Make all processes agree on a common value, each process having an
initial preference p. Desired properties of consensus algorithms:

Validity : If a process decides value p, some process started with
preference p.

Agreement : Two processes that decide decide of the same value.

Termination : All processes eventually decide of a value.



3

The considered algorithms Our model The safety problem Results Conclusion

A motivating example: Aspnes’ consensus algorithm

int k := 0, bool p ∈ {0, 1}, (rgb[r ])b∈{0,1},r∈N all initialized to no;
while true do

read from rg0[k] and rg1[k] ;
if rg0[k] = yes and rg1[k] = no then p := 0;
else if rg0[k] = no and rg1[k] = yes then p := 1;
write yes to rgp[k] ;

if k > 0 then
read from rg1−p[k−1] ;

if rg1−p[k−1] = no then return p;

k := k+1;

Algorithm 1: Aspnes’ consensus algorithm1.

read from registers
of rounds k and k − 1

write to registers
of round k

1 James Aspnes, Fast deterministic consensus in a noisy environment, Journal of Algorithms,

2002.



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no no

no yesyes yes

no

yes

no

yes

no

yes

no

yes

0

0

0

1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no no

no yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0

1

1

1

1

1

1

1

writes

writes

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0

1

1

1

1

1

1

1

writes

writes

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0

1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads

reads
reads

writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads

reads

B wants to write on rg1[k]
Non-atomic:

A may move before B writes

reads
reads

writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads

reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads

writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads

writes

writes

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writes

writes

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads

readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads

reads

writes

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
reads

writes

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads

readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads

reads

writes

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
reads

writes

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



4

The considered algorithms Our model The safety problem Results Conclusion

An example of execution of Aspnes’ consensus algorithm

0

1

2

3

...
rg0[k] rg1[k]

no

no

0

A B C

no nono yes

yes yes

no

yes

no

yes

no

yes

no

yes

0

0

0 1

1

1

1

1

1

1

writeswrites

no preference wins on this round

reads
reads

reads
writeswrites

reads
readswrites

reads

reads
readswrites

reads

1

process B wins the race

All process getting to round 3
will take preference 1



5

The considered algorithms Our model The safety problem Results Conclusion

A model: round-based register protocols

Inspired by models for shared-memory systems without rounds23.

One model for all processes: a finite automaton

Transitions are read actions, write actions and round increments

Processes can be on different rounds, the round number of a process
may never decrease

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

2Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of

asynchronous shared-memory systems. CAV’13
3 Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.

Reachability in networks of register protocols under stochastic schedulers. ICALP’16



5

The considered algorithms Our model The safety problem Results Conclusion

A model: round-based register protocols

Inspired by models for shared-memory systems without rounds23.

One model for all processes: a finite automaton

Transitions are read actions, write actions and round increments

Processes can be on different rounds, the round number of a process
may never decrease

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

2Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of

asynchronous shared-memory systems. CAV’13
3 Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.

Reachability in networks of register protocols under stochastic schedulers. ICALP’16



5

The considered algorithms Our model The safety problem Results Conclusion

A model: round-based register protocols

Inspired by models for shared-memory systems without rounds23.

One model for all processes: a finite automaton

Transitions are read actions, write actions and round increments

Processes can be on different rounds, the round number of a process
may never decrease

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

2Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of

asynchronous shared-memory systems. CAV’13
3 Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.

Reachability in networks of register protocols under stochastic schedulers. ICALP’16



5

The considered algorithms Our model The safety problem Results Conclusion

A model: round-based register protocols

Inspired by models for shared-memory systems without rounds23.

One model for all processes: a finite automaton

Transitions are read actions, write actions and round increments

Processes can be on different rounds, the round number of a process
may never decrease

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

2Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of

asynchronous shared-memory systems. CAV’13
3 Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.

Reachability in networks of register protocols under stochastic schedulers. ICALP’16



6

The considered algorithms Our model The safety problem Results Conclusion

A limited visilibity range

k + 1

k

k − 1

...

k − v

k − v − 1

Process

rg1[k + 1] · · · rgd[k + 1]

rg1[k] · · · rgd[k]

rg1[k − 1] · · · rgd[k − 1]

rg1[k−v] · · · rgd[k−v]

rg1[k−v−1] · · · rgd[k−v−1]

...

can be written to

can be read from

v given in unary



7

The considered algorithms Our model The safety problem Results Conclusion

Semantics of the model

From now on, let d = 1: one register per round.

0

1

2

3

...

p ×3

×1q

d0

a
b

d0

...

rounds processes registers

processes are undistinguished

((q,write(b), r), 3)

0

1

2

3

...

p ×3

×1r

d0

a
b

b

...

Initial configuration
of size n:

0

1

2

3

...

q0 ×n d0

d0

d0

d0

...



7

The considered algorithms Our model The safety problem Results Conclusion

Semantics of the model

From now on, let d = 1: one register per round.

0

1

2

3

...

p ×3

×1q

d0

a
b

d0

...

rounds processes registers

processes are undistinguished

((q,write(b), r), 3)

0

1

2

3

...

p ×3

×1r

d0

a
b

b

...

Initial configuration
of size n:

0

1

2

3

...

q0 ×n d0

d0

d0

d0

...



7

The considered algorithms Our model The safety problem Results Conclusion

Semantics of the model

From now on, let d = 1: one register per round.

0

1

2

3

...

p ×3

×1q

d0

a
b

d0

...

rounds processes registers

processes are undistinguished

((q,write(b), r), 3)

0

1

2

3

...

p ×3

×1r

d0

a
b

b

...

Initial configuration
of size n:

0

1

2

3

...

q0 ×n d0

d0

d0

d0

...



8

The considered algorithms Our model The safety problem Results Conclusion

The safety problem

The (parameterized) safety problem

Is it true that, for all numbers of processes n and all executions from the
initial configuration of size n, an error state qerr is avoided?

Dual problem: look for an execution covering the error.

If the error state cannot be covered, the system is safe.

Agreement and Validity of Aspnes’ consensus algorithm can be encoded
as safety properties.



8

The considered algorithms Our model The safety problem Results Conclusion

The safety problem

The (parameterized) safety problem

Is it true that, for all numbers of processes n and all executions from the
initial configuration of size n, an error state qerr is avoided?

Dual problem: look for an execution covering the error.

If the error state cannot be covered, the system is safe.

Agreement and Validity of Aspnes’ consensus algorithm can be encoded
as safety properties.



8

The considered algorithms Our model The safety problem Results Conclusion

The safety problem

The (parameterized) safety problem

Is it true that, for all numbers of processes n and all executions from the
initial configuration of size n, an error state qerr is avoided?

Dual problem: look for an execution covering the error.

If the error state cannot be covered, the system is safe.

Agreement and Validity of Aspnes’ consensus algorithm can be encoded
as safety properties.



8

The considered algorithms Our model The safety problem Results Conclusion

The safety problem

The (parameterized) safety problem

Is it true that, for all numbers of processes n and all executions from the
initial configuration of size n, an error state qerr is avoided?

Dual problem: look for an execution covering the error.

If the error state cannot be covered, the system is safe.

Agreement and Validity of Aspnes’ consensus algorithm can be encoded
as safety properties.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

initial state error state

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

read a from
register of previous round

read initial symbol d0
from register of current round

increment
round

v = 1 (processes can read one round back)

Observe that qerr can be covered if and only if, for some round k ,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q4 can be covered from the initial configuration with one process:

0

1

d0

d0

a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a×2q0 q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q4 can be covered from the initial configuration with one process:

0

1

d0

d0

a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a×2q0 q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q4 can be covered from the initial configuration with one process:

0

1

d0

d0

a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a×2q0 q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q4 can be covered from the initial configuration with one process:

0

1

d0

d0

a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a×2q0 q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q6 can be covered from the initial configuration with two processes:

0

1

d0

d0a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a×2q0 q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q6 can be covered from the initial configuration with two processes:

0

1

d0

d0a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a

×2q0

q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q6 can be covered from the initial configuration with two processes:

0

1

d0

d0a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a

×2

q0 q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q6 can be covered from the initial configuration with two processes:

0

1

d0

d0a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a

×2q0

q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q6 can be covered from the initial configuration with two processes:

0

1

d0

d0a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a

×2q0

q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

State q6 can be covered from the initial configuration with two processes:

0

1

d0

d0a

q0

q2

q0

q3

writes a

q4
reads d0

d0

d0

a

×2q0

q1

q2

q0

q5
reads a

q6

reads d0

writes a

Observe that qerr can be covered if and only if, for some round k,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

Claim: the system is safe.

Observe that qerr can be covered if and only if, for some round k ,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;

To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

Claim: the system is safe.

Observe that qerr can be covered if and only if, for some round k ,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;

To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

Claim: the system is safe.

Observe that qerr can be covered if and only if, for some round k ,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;

To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

Claim: the system is safe.

Observe that qerr can be covered if and only if, for some round k ,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;

To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.



9

The considered algorithms Our model The safety problem Results Conclusion

A small example

q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)

read−1(a)
read0(d0)

write(b)

read0(b)

Claim: the system is safe.

Observe that qerr can be covered if and only if, for some round k ,
(q4, k) and (q6, k) can be covered in the same execution. But:

To cover (q4, k), one must write to rg[k] while rg[k−1] still has
value d0;
To cover (q6, k), one must write to rg[k−1] while rg[k] still has
value d0.

This is the only source of “incompatibility”!



10

The considered algorithms Our model The safety problem Results Conclusion

Main contribution

Parameterized safety in round-based register protocols is
PSPACE-complete4.

4Nathalie Bertrand, Nicolas Markey, Ocan Sankur, W. Parameterized safety verification of

round-based shared-memory systems. ICALP’22



11

The considered algorithms Our model The safety problem Results Conclusion

Lower bounds

Exponential lower bounds

In order to reach an error state, one might need at least:

An exponential number of processes,

spreading across an exponential number of rounds at the same time.

Theorem

The safety problem is PSPACE-hard.

By reduction from Quantified Boolean Formula.



11

The considered algorithms Our model The safety problem Results Conclusion

Lower bounds

Exponential lower bounds

In order to reach an error state, one might need at least:

An exponential number of processes,

spreading across an exponential number of rounds at the same time.

Theorem

The safety problem is PSPACE-hard.

By reduction from Quantified Boolean Formula.



11

The considered algorithms Our model The safety problem Results Conclusion

Lower bounds

Exponential lower bounds

In order to reach an error state, one might need at least:

An exponential number of processes,

spreading across an exponential number of rounds at the same time.

Theorem

The safety problem is PSPACE-hard.

By reduction from Quantified Boolean Formula.



12

The considered algorithms Our model The safety problem Results Conclusion

PSPACE-membership

Theorem

There exists a (non-deterministic) polynomial-space algorithm solving the
(dual of the) parameterized safety problem.

The execution cannot be guessed move by move in polynomial space:
too many relevant rounds at the same time!

Ingredients of the algorithm

Copycat property (thanks to non-atomicity)

Thanks to copycat, define an abstraction where one only remembers
which pairs (state,round) are populated by at least one process

Exploit limited visibility range: reads and writes are local with
respect to the round

Rely on a sliding window along the rounds



12

The considered algorithms Our model The safety problem Results Conclusion

PSPACE-membership

Theorem

There exists a (non-deterministic) polynomial-space algorithm solving the
(dual of the) parameterized safety problem.

The execution cannot be guessed move by move in polynomial space:
too many relevant rounds at the same time!

Ingredients of the algorithm

Copycat property (thanks to non-atomicity)

Thanks to copycat, define an abstraction where one only remembers
which pairs (state,round) are populated by at least one process

Exploit limited visibility range: reads and writes are local with
respect to the round

Rely on a sliding window along the rounds



12

The considered algorithms Our model The safety problem Results Conclusion

PSPACE-membership

Theorem

There exists a (non-deterministic) polynomial-space algorithm solving the
(dual of the) parameterized safety problem.

The execution cannot be guessed move by move in polynomial space:
too many relevant rounds at the same time!

Ingredients of the algorithm

Copycat property (thanks to non-atomicity)

Thanks to copycat, define an abstraction where one only remembers
which pairs (state,round) are populated by at least one process

Exploit limited visibility range: reads and writes are local with
respect to the round

Rely on a sliding window along the rounds



12

The considered algorithms Our model The safety problem Results Conclusion

PSPACE-membership

Theorem

There exists a (non-deterministic) polynomial-space algorithm solving the
(dual of the) parameterized safety problem.

The execution cannot be guessed move by move in polynomial space:
too many relevant rounds at the same time!

Ingredients of the algorithm

Copycat property (thanks to non-atomicity)

Thanks to copycat, define an abstraction where one only remembers
which pairs (state,round) are populated by at least one process

Exploit limited visibility range: reads and writes are local with
respect to the round

Rely on a sliding window along the rounds



12

The considered algorithms Our model The safety problem Results Conclusion

PSPACE-membership

Theorem

There exists a (non-deterministic) polynomial-space algorithm solving the
(dual of the) parameterized safety problem.

The execution cannot be guessed move by move in polynomial space:
too many relevant rounds at the same time!

Ingredients of the algorithm

Copycat property (thanks to non-atomicity)

Thanks to copycat, define an abstraction where one only remembers
which pairs (state,round) are populated by at least one process

Exploit limited visibility range: reads and writes are local with
respect to the round

Rely on a sliding window along the rounds



12

The considered algorithms Our model The safety problem Results Conclusion

PSPACE-membership

Theorem

There exists a (non-deterministic) polynomial-space algorithm solving the
(dual of the) parameterized safety problem.

The execution cannot be guessed move by move in polynomial space:
too many relevant rounds at the same time!

Ingredients of the algorithm

Copycat property (thanks to non-atomicity)

Thanks to copycat, define an abstraction where one only remembers
which pairs (state,round) are populated by at least one process

Exploit limited visibility range: reads and writes are local with
respect to the round

Rely on a sliding window along the rounds



13

The considered algorithms Our model The safety problem Results Conclusion

A visual display for executions

Execution: σ0
θ0−→σ1

θ1−→σ2
θ2−→σ3

θ3−→σ4
θ4−→σ5

θ5−→σ6
θ6−→σ7

moves:

rounds:

θ0

1

θ1

4

θ2

3

θ3

2

θ4

0

θ5

1

θ6

4

rounds

steps

θ0

θ1

θ2

θ3

θ4

θ5

θ6

0

1

2

3

4



14

The considered algorithms Our model The safety problem Results Conclusion

The sliding window

Here v = 1: processes at round k can read from rounds k and k−1

0

1

2

3

4

rounds

steps

θ0

θ1

θ2

θ3

θ4

θ5

θ6

Number of relevant

rounds at a given

time may be

exponential...

storable in poly-
nomial space?

not too wide in the abstract semantics
→ storable in polynomial space

sliding
window

θ4 is forgotten

θ3 is inserted
between
θ0 and θ5



14

The considered algorithms Our model The safety problem Results Conclusion

The sliding window

Intuitive idea of proceeding move by move is not working:

0

1

2

3

4

rounds

steps

θ0

θ1

θ2

θ3

θ4

θ5

θ6

Number of relevant

rounds at a given

time may be

exponential...

storable in poly-
nomial space?

not too wide in the abstract semantics
→ storable in polynomial space

sliding
window

θ4 is forgotten

θ3 is inserted
between
θ0 and θ5



14

The considered algorithms Our model The safety problem Results Conclusion

The sliding window

Instead: sliding window along the rounds non-deterministically guessing
the execution

0

1

2

3

4

rounds

steps

θ0

θ1

θ2

θ3

θ4

θ5

θ6

Number of relevant

rounds at a given

time may be

exponential...

storable in poly-
nomial space?

not too wide in the abstract semantics
→ storable in polynomial space

sliding
window

θ4 is forgotten

θ3 is inserted
between
θ0 and θ5



14

The considered algorithms Our model The safety problem Results Conclusion

The sliding window

Checking that a move is valid only depends on what happens locally.

0

1

2

3

4

rounds

steps

θ0

θ1

θ2

θ3

θ4

θ5

θ6

Number of relevant

rounds at a given

time may be

exponential...

storable in poly-
nomial space?

not too wide in the abstract semantics
→ storable in polynomial space

sliding
window

θ4 is forgotten

θ3 is inserted
between
θ0 and θ5



14

The considered algorithms Our model The safety problem Results Conclusion

The sliding window

And so on...

0

1

2

3

4

rounds

steps

θ0

θ1

θ2

θ3

θ4

θ5

θ6

Number of relevant

rounds at a given

time may be

exponential...

storable in poly-
nomial space?

not too wide in the abstract semantics
→ storable in polynomial space

sliding
window

θ4 is forgotten

θ3 is inserted
between
θ0 and θ5



14

The considered algorithms Our model The safety problem Results Conclusion

The sliding window

And so on...

0

1

2

3

4

rounds

steps

θ0

θ1

θ2

θ3

θ4

θ5

θ6

Number of relevant

rounds at a given

time may be

exponential...

storable in poly-
nomial space?

not too wide in the abstract semantics
→ storable in polynomial space

sliding
window

θ4 is forgotten

θ3 is inserted
between
θ0 and θ5



15

The considered algorithms Our model The safety problem Results Conclusion

Exponential upper bounds

Termination of the safety algorithm

The algorithm returns that the system is not safe if
a local configuration reached contains qerr.

After an exponential number of iterations, the information has looped
and the algorithm stops.

From the algorithm, we derive exponential upper bounds matching the
lower bounds:

Exponential upper bound on cutoff

There exists an exponential upper bound on the number of processes
needed to cover qerr.

Exponential upper bound on the number of rounds

There exists an exponential upper bound on the number of rounds
needed to cover qerr.



15

The considered algorithms Our model The safety problem Results Conclusion

Exponential upper bounds

Termination of the safety algorithm

The algorithm returns that the system is not safe if
a local configuration reached contains qerr.

After an exponential number of iterations, the information has looped
and the algorithm stops.

From the algorithm, we derive exponential upper bounds matching the
lower bounds:

Exponential upper bound on cutoff

There exists an exponential upper bound on the number of processes
needed to cover qerr.

Exponential upper bound on the number of rounds

There exists an exponential upper bound on the number of rounds
needed to cover qerr.



15

The considered algorithms Our model The safety problem Results Conclusion

Exponential upper bounds

Termination of the safety algorithm

The algorithm returns that the system is not safe if
a local configuration reached contains qerr.

After an exponential number of iterations, the information has looped
and the algorithm stops.

From the algorithm, we derive exponential upper bounds matching the
lower bounds:

Exponential upper bound on cutoff

There exists an exponential upper bound on the number of processes
needed to cover qerr.

Exponential upper bound on the number of rounds

There exists an exponential upper bound on the number of rounds
needed to cover qerr.



15

The considered algorithms Our model The safety problem Results Conclusion

Exponential upper bounds

Termination of the safety algorithm

The algorithm returns that the system is not safe if
a local configuration reached contains qerr.

After an exponential number of iterations, the information has looped
and the algorithm stops.

From the algorithm, we derive exponential upper bounds matching the
lower bounds:

Exponential upper bound on cutoff

There exists an exponential upper bound on the number of processes
needed to cover qerr.

Exponential upper bound on the number of rounds

There exists an exponential upper bound on the number of rounds
needed to cover qerr.



15

The considered algorithms Our model The safety problem Results Conclusion

Exponential upper bounds

Termination of the safety algorithm

The algorithm returns that the system is not safe if
a local configuration reached contains qerr.

After an exponential number of iterations, the information has looped
and the algorithm stops.

From the algorithm, we derive exponential upper bounds matching the
lower bounds:

Exponential upper bound on cutoff

There exists an exponential upper bound on the number of processes
needed to cover qerr.

Exponential upper bound on the number of rounds

There exists an exponential upper bound on the number of rounds
needed to cover qerr.



16

The considered algorithms Our model The safety problem Results Conclusion

Conclusion

Summary

Round-based register protocols are a model for round-based
shared-memory algorithms such as Aspnes’ consensus algorithm

Parameterized safety is PSPACE-complete

The poly-space algorithm relies on a sliding window along the rounds

Future work

Generalisation to other reachability problems (e.g. TARGET)

Almost-sure reachability/cube reachability in round-based register
protocols (termination of Aspnes’ algorithm)

Weak memory

Thank you!



16

The considered algorithms Our model The safety problem Results Conclusion

Conclusion

Summary

Round-based register protocols are a model for round-based
shared-memory algorithms such as Aspnes’ consensus algorithm

Parameterized safety is PSPACE-complete

The poly-space algorithm relies on a sliding window along the rounds

Future work

Generalisation to other reachability problems (e.g. TARGET)

Almost-sure reachability/cube reachability in round-based register
protocols (termination of Aspnes’ algorithm)

Weak memory

Thank you!



16

The considered algorithms Our model The safety problem Results Conclusion

Conclusion

Summary

Round-based register protocols are a model for round-based
shared-memory algorithms such as Aspnes’ consensus algorithm

Parameterized safety is PSPACE-complete

The poly-space algorithm relies on a sliding window along the rounds

Future work

Generalisation to other reachability problems (e.g. TARGET)

Almost-sure reachability/cube reachability in round-based register
protocols (termination of Aspnes’ algorithm)

Weak memory

Thank you!



16

The considered algorithms Our model The safety problem Results Conclusion

Conclusion

Summary

Round-based register protocols are a model for round-based
shared-memory algorithms such as Aspnes’ consensus algorithm

Parameterized safety is PSPACE-complete

The poly-space algorithm relies on a sliding window along the rounds

Future work

Generalisation to other reachability problems (e.g. TARGET)

Almost-sure reachability/cube reachability in round-based register
protocols (termination of Aspnes’ algorithm)

Weak memory

Thank you!



16

The considered algorithms Our model The safety problem Results Conclusion

Conclusion

Summary

Round-based register protocols are a model for round-based
shared-memory algorithms such as Aspnes’ consensus algorithm

Parameterized safety is PSPACE-complete

The poly-space algorithm relies on a sliding window along the rounds

Future work

Generalisation to other reachability problems (e.g. TARGET)

Almost-sure reachability/cube reachability in round-based register
protocols (termination of Aspnes’ algorithm)

Weak memory

Thank you!



16

The considered algorithms Our model The safety problem Results Conclusion

Conclusion

Summary

Round-based register protocols are a model for round-based
shared-memory algorithms such as Aspnes’ consensus algorithm

Parameterized safety is PSPACE-complete

The poly-space algorithm relies on a sliding window along the rounds

Future work

Generalisation to other reachability problems (e.g. TARGET)

Almost-sure reachability/cube reachability in round-based register
protocols (termination of Aspnes’ algorithm)

Weak memory

Thank you!



16

The considered algorithms Our model The safety problem Results Conclusion

Conclusion

Summary

Round-based register protocols are a model for round-based
shared-memory algorithms such as Aspnes’ consensus algorithm

Parameterized safety is PSPACE-complete

The poly-space algorithm relies on a sliding window along the rounds

Future work

Generalisation to other reachability problems (e.g. TARGET)

Almost-sure reachability/cube reachability in round-based register
protocols (termination of Aspnes’ algorithm)

Weak memory

Thank you!



17

Classical notions of fairness are not satisfactory

q0 q1 qerr

Inc
write(a)

write(b)

read(b)

qerr is reached with probability 1 with a stochastic scheduler with two
processes.

Consider the execution with two processes where one process goes to q1
and back to q0 on every round, while the other process stays on q0
forever.

This execution is fair with respect to:

Fairness on moves: no move is available infinitely often because k
increases

Fairness on transitions: transition from q1 to qerr is never enabled.


	The considered algorithms
	Our model
	The safety problem
	Results
	Conclusion
	Appendix

