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Overview

Dynamical systems

Mathematical models allow us to make predictions
for natural phenomena, and are at the basis of the
physical, chemical and biological sciences.

Dynamical systems are a fundamental modeling
tool, they represent the evolution of states in time of
a certain phenomenon or device.

Such systems often have a quite complex behavior
and their analysis represents a challenging task and a
very active area of research.

We focus on purely continuous systems, which is
the core problem, leaving the extension to hybrid
systems to a future phase.
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Overview

Van-der-Pol system (VDP)

Nonlinear Ordinary Differential Equations (ODEs) will be analyzed.

For example, VDP models a system in
which energy is added and subtracted,
resulting in a periodic motion:{

ẋ = y

ẏ = µ(1− x2)y − x
(1)

where:

x : position coordinate.

y : velocity of the motion.

µ: scalar parameter, indicating
the nonlinearity and the strength
of the damping.
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Overview

Overview

Linear and Taylor approximations are fundamental tools in the analysis of
nonlinear ODEs, but they generate approximate solutions that are typically
only locally accurate.

Our goal is to find conditions and methods to compute linear approximations
of nonlinear ODEs that are globally accurate, as much as possible.

Carleman linearization and Krylov projection are applied to produce a
linear tractable system, approximating the original nonlinear system.

Error w.r.t the original system is bounded over a infinite time horizon,
under suitable stability conditions.
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Formalization

Formalization

Let
ẋ = f (x) (2)

a continuous system of ODEs, with x = (x1, ..., xn)T ∈ Rn a vector of
dependent variables, f = (f1, ..., fn)T a vector field of locally Lipschitz
analytic functions, and x(t; x0) its unique solution with initial condition
x(0) = x0 ∈ X0.

− > We consider a function g that is real analytic, and we study the
observable of system (2) via g , that is

g ◦ x(t; x0) (3)
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Formalization Linearization

Formalization

Let

Lf (g) := 〈∇g · f 〉 =
n∑

j=1

∂g

∂xj
· fj

the Lie derivative of g w.r.t. f .

We fix a set A = {α1, α2, ...} of basis functions (e.g. monomials), and
consider vector α = (α1, ..., αM)T with αi ∈ A for i = 1, ...,M, then we
assume that:

g = vTα,

where v = (λ1, ..., λM)T ∈ RM , and that:

Lf (αi ) =
∑
j≥1

aijαj ,

where aij ∈ R, for i = 1, ..,M, and j ≥ 1.

M ∈ N is chosen big enough to guarantee an approximation of O(tm)
around t = 0, where m is the order of approximation.
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Formalization Linearization

Linearization (Carleman embedding)

Given A ∈ RM×M , B ∈ RM×k , and ψ = (αM+1, ..., αM+k)T a vector of
monomials, where k is large enough to ensure that aij = 0 for each
j > M + k and 1 ≤ i ≤ M:

Lf (α) =A · α + B · ψ −→remainder (4)

d

dt
α(x(t; x0)) = A · α(x(t; x0)) + (((((((hhhhhhhB · ψ(x(t; x0))−→ first approximation layer

(5)

Thus, for any fixed initial condition x0 ∈ X0 of (2), we consider the following
linearized finite system in variables z = (z1, ..., zM)T ∈ Rm

ż = Az (6)

z(0) = α(x0) =: z0 (7)

whose unique solution is an approximation of α(x(t; x0)).

− > Matrix A is in general too large to be explicitly generated
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Formalization Linearization

Carleman Linearization for VDP

Let m ∈ R an approximation order, and α(x) the vector of monomials
appearing in L(j)(g), for j = 0, ...,m − 1.

Considering VDP system, with m = 2, vector α(x) is given by:

α(x) = (x1, x2, x
2
1 · x2)T .

Thus, the linearized finite system becomes:

ż =

[
0 −1 0
1 1 0
0 −1 1

]
z

with z ∈ R3, and initial conditions z(0) = α(x0) =: z0, for x0 = (x01, x02)T ∈ X0.
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Formalization Model-Order reduction

Model-order reduction

We project AT onto a subspace of RM of dimension m� M, the
m-dimensional Krylov space generated by v and AT :

Km := span{v ,AT v , (AT )2v , ..., (AT )m−1v} (8)

Thus, the following reduced linear system of size m in variables
y = (y1, ..., ym)T is generated −→ second approximation layer

ẏ = HT
m y

y(0) = V T z0 =: y0

(9)

(10)

with Hm := V TATV , where V = [v1|...|vm] is an orthonormal basis of Km.

System (9) is used to approximate: g(x(t)) ≈ ĝ(x(t)) := vTVy(t; y0) .

The error function relative to g is given by: εg (t; x0) := g(t; x0)− ĝ(t; x0).
In particular, function εg (t; x0) is O(tm) around t = 0, ∀ x0 ∈ X0.
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Global error bounding

Global error bounding

Theorem

For any t > 0 such that x(τ ; x0) is defined for τ ∈ [0, t]:

|εg (t; x0)| ≤ ||v ||2
∫ t

0

|h(x(τ ; x0))|·|(e(t−τ)HT
m )1,m|dτ. (11)

If additionally Hm is stable, then there is a constant D > 0 independent of t such
that

|εg (t; x0)| ≤ ||v ||2 D
∫ t

0

|h(x(τ ; x0))|dτ . (12)

where h : Rn −→ R is the remainder function.
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Application to Reachability Analysis

Application to Reachability Analysis

Given a nonlinear system, we apply the outlined linearization scheme to
compute an approximation of the flow, and bound the corresponding error to
generate a validated overapproximation of the reachable set.

Globally bounding the error for large t may be difficult, since it requires an
upper bound of the solution x(τ ; x0) for τ ∈ [0, t]. − > Not easy to find!

The problem is solved breaking the interval [0, t] into small subintervals:
0 = t0, t1, ..., tN = t, with tk−1 < tk for k = 1, ...,N, and using local
bounds of the error function:

γ−(t; S ,E) ≤ εg (τ ; x0) ≤ γ+(t; S ,E)

with τ ∈ [0, t]. γ+, γ− are obtained from the Taylor theorem in Lagrange
form and using S ,E , that are validated enclosures of x(t; x0) and y(t; x0),
respectively.

− > S ,E can be computed through standard reachability analysis
techniques.
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Application to Reachability Analysis

Pseudocode
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Application to Reachability Analysis

Reachset overapproximation

Let u1, ..., up ∈ Rn and X0 = {
∑p

i=1 λiui : λi ≥ 0 and
∑p

i=1 λi = 1}, in practice
we will consider its halfspace representation: (C0, b0).

Definition (reachset overapproximation)

Let a sequence of vectors ηk = (η
(1)
k , ..., η

(`k )
k )T ∈ R`k for k = 0, 1, ... and of

polytopes Rk ⊆ Rn, that represent overapproximations of reachsets.
Reachsets overapproximations can be defined inductively as: η0 := 0,R0 := X0,
and for k ≥ 1:

η
(j)
k := max

ξ∈Rk−1

δ∈[−γk ,γk ]

cTj (x̂(∆k ; ξ) + δ) (j = 1, ..., `k) (13)

Rk := {x ∈ Rn : Ckx ≤ ηk} . (14)
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Experiments Graphical comparison

Experiments: graphical comparison

We applied a proof-of-concept Python
implementation of our approximate
solution method on a couple of systems
in R2: Lotka Volterra and one taken
from [2]. In detail, we show:

exact solution computed numerically
(yellow)

our approximate solution (black)

Taylor expansion of order m − 1 of the
solution from t = 0 (blue)

the solution of the linearized system
(green).

for x0 = (0.485, 0.2)T , and t ∈ [0, 1].
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Experiments Reachsets: comparison with CORA and Flow*

Experiments: reachability analysis

We apply a proof-of-concept Python implementation of CKR, and compare
reachsets overapproximations generated by CKR and those produced by two
state-of-the-art reachability tools: CORA, Flow∗, on a few plain models.

Reachsets Rk for VDP obtained respectively from CORA, Flow* and CKR are:

with X0 = [1.00, 1.50]× [2.00, 2.45], T = 5, m = 10 for Flow* and CORA, and
m = 4 for CKR.
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Experiments Reachsets: comparison with CORA and Flow*

Experiments: reachability analysis

We consider also the following system, that has the origin as a stable
equilibrium point: {

ẋ1 = −x3
1 + x2

ẋ2 = −x3
1 − x3

2

(15)

Here we report the obtained reachsets for CORA, Flow* and CKR, with
X0 = [−0.5, 0.3]× [−0.7, 0.8].

− > we have observed empirically that in this situation our method
gives the best results
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Experiments Reachsets: comparison with CORA and Flow*

Experiments: reachability analysis

Finally, we analyze also the following unstable system:{
ẋ1 = x1(1.5− x2)

ẋ2 = −x2(3− x1)
(16)

The reachsets computed by CORA, Flow* and CKR, setting
X0 = [−0.40, 0.52]× [0.18, 0.27] are the following:

− > In general, relatively large initial sets have been considered.
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Experiments Reachsets: comparison with CORA and Flow*

Experiments: reachability analysis

A quantitative assessment of the accuracy has been made. We measure
accuracy as the average area of the reachsets returned by each algorithm
until natural or premature termination:

av area =
1

N

N∑
k=1

area(Rk) (17)

Also times at which different algorithms stop are compared, stopping
may be due to a natural termination or to an explosion of the generated
reachset (break down).

Execution times are also compared, even if it makes little sense to compare
a proof-of-concept implementation with highly optimized tools in this
respect.
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Experiments Reachsets: comparison with CORA and Flow*

Experiments: reachability analysis

Sys TH

Termination Accuracy (average area) Execution time

Flow* CORA CKR Flow* CORA CKR Flow* CORA CKR

m=4 m=8 m=10 all m all m m=4 m=8 m=10 all m m=4/5 m=4 m=8 m=10 m=4 m=4/5

(16)

1 1 1 1 1 1 0.02 0.02 0.02 0.01 0.01 0.12 1.45 3.90 0.17 13.31

3 3 3 3 2.2∗ 3 22.75 6.20 6.18 1.27∗ 2.82 0.98 4.67 14.94 0.47∗ 50.31

5 2.7∗ 5 5 2.2∗ 5 99.67∗ 4.37 4.35 1.27 1.57 2.74∗ 8.55 25.24 0.49∗ 94.79

(15)

1 1 1 1 0.6∗ 1 5.16 3.34 3.33 5.34∗ 0.95 0.38 6.92 23.06 4.28∗ 14.27

3 1.3∗ 1.5∗ 1.5∗ 0.6∗ 3 8.37∗ 6.81∗ 6.10∗ 5.34∗ 0.72 5.04∗ 21.90∗ 67.76∗ 4.18∗ 37.96

5 1.3∗ 1.5∗ 1.5∗ 0.6∗ 5 8.37∗ 6.81∗ 6.10∗ 5.34∗ 0.62 4.94∗ 19.84∗ 76.48∗ 5.08∗ 64.42

vdp

1 1 1 1 1 1 0.37 0.37 0.37 0.15 0.12 0.13 1.71 5.03 2.02 13.72

3 3 3 3 3 3 0.16 0.15 0.15 0.09 0.05 0.42 5.05 15.42 5.13 37.05

5 5 5 5 5 5 0.15 0.13 0.13 0.18 0.07 0.77 8.54 24.93 10.36 65.66
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Experiments Reachsets: comparison with CORA and Flow*

Conclusions

Contribution:

A method to compute, given a nonlinear ODEs system, a linear system
which is at the same time computationally tractable and useful to produce
globally accurate approximate solutions.

We have shown empirically that this method brings some benefit to classical
reachability analysis in terms of accuracy.

For future work, it would be interesting:

to investigate the relation of our method with other well-known linearization
schemes, such as the Koopman approach.

to explore the use of our reduced linearized system in MPC, and its
application in runtime monitoring.
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Experiments Reachsets: comparison with CORA and Flow*
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Thank you
for your attention!
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