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Y is a finite alphabet, e.g., ¥ = {a,b,c,d}.
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Y is a finite alphabet, e.g., ¥ = {a, b, c,d}.
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Notation

Embedding: e: {1,...,|v|]} = {1,...,|u|} with e(1) < ... < e(|v]).
v <e u: e is an embedding with v[i] = ule(i)] Vi € {1,2,...,]|v]|}.

v is subsequence of u (v < u) if there is some embedding e with v <. u.



Subsequences

Set of Subsequences of length k

For given integer k and word w, let Subseq(k, w) denote the set of subsequences of
length k of w.

Subseq(k,w) = {v € T | v < w}.

Example:

Subseq(3, abbacbab) = {aaa, aab, aac, aba, abb, abc, aca, acb,
baa, bab, bac, bba, bbb, bbc, bca, bcb,
cab, cba, cbb}



Subsequences in TCS

Subsequences are a central concept in many different areas of TCS:

» Formal languages and logics (piecewise testable languages, subword order and
downward closures).

» Combinatorics on words.
» Modelling concurrency.
» Database theory (event stream processing).

» Algorithms (longest common subsequence, shortest common supersequence).
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Computational Problems for Subsequences

Matching
Input: uvex*
Question: v =u?

Analysis Problems
Input: u,veX* keN
Questions:  Subseq(k, u) = Subseq(k, v)? (Equivalence)
Subseq(k, u) C Subseq(k,v)? (Containment)
Subseq(k, u) = £k? (Universality)
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Matching is trivially solvable in linear time.
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Subsequence Problems are Simple

Observation

Matching is trivially solvable in linear time.

Observation

We can construct a DFA for Subseq(k, u) of size O(k|ul).
= the analysis problems can be solved in polynomial time.



Subsequence Problems are Simple

Observation

Matching is trivially solvable in linear time.

Observation
We can construct a DFA for Subseq(k, u) of size O(k|ul).

= the analysis problems can be solved in polynomial time.

Theorem (Gawrychowski et al., STACS 2021)

Equivalence can be decided in linear time.






Shift from Classical Scenario to Gap Constraints

Classical subsequences ...

... are usually considered with arbitrary embeddings.

For practical scenarios, it is reasonable to introduce gap constraints.

We restrict the length of gaps.

» Alignments of bio-sequences.

» Modelling single processor scheduling with fairness properties.
And we restrict allowed symbols that can occur in gaps.

» Complex event processing — forbidding events in specific positions of a
subsequence.
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gape(u, i) = ule(i) + 1..e(i + 1) — 1] ie{l,...,|v|]-1}
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gap.(u,1) = bcabc
gap.(u,2) =¢
gap.(u,3) =¢
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b c b c a b c a b a c
v = c a b a
gap.(u,1) = bcabc

gap.(u,2) =¢
gap.(u,3) =¢

Gap constraints

gc = (C,. .., Cyj—1), where C; C " for every i € {1,...,[v| —1}.
(tuple of gap constraints)

The embedding e satisfies gc w.r.t. v, if, for every i € [|v| — 1], gap.(u,i) € C.
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u=a b ¢ b ¢ a b ¢ a b a c
v= c a b a

gap.(u,1) = bcabc C1 = {ab, ac, bc, bcabc}

gap.(u,2) =¢ G ={e,a,b}

gap.(u,3) =¢ G ={a,b,c}

Gap constraints

gc = (C,. .., Cyj—1), where C; C " for every i € {1,...,[v| —1}.
(tuple of gap constraints)
The embedding e satisfies gc w.r.t. v, if, for every i € [|v| — 1], gap.(u,i) € C.
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v =gc u: v = u for some embedding e satisfying gc.
(v is a gc-subsequence of )
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v =gc u: v = u for some embedding e satisfying gc.
(v is a gc-subsequence of )

Subseq(ge, u) = {v € ZI&EH | v < u}.
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Gap Constraints

Notations

v Rgc Ui v = u for some embedding e satisfying gc.
(v is a gc-subsequence of u)
Subseq(ge, u) = {v € TIEHt | v < u}.

Example

gc = (Cl, C2) with GG = G = {a,b, C}

Subseq(gc, abbacbab) = {abc, bab, bca, abb} .
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Input: u,v € ¥ k:=|v|, (k — 1)-tuple gc of gap constraints.
Question: v =, u?
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Problems for Gap Constrained Subsequences

Matching

Input: u,v € ¥ k:=|v|, (k — 1)-tuple gc of gap constraints.

Question: v =g u?

Analysis Problems
Input: u,v € X* (k — 1)-tuple gc of gap constraints.
Questions:  Subseq(gc, u) = Subseq(gc, v)? (Equivalence)
Subseq(gc, u) C Subseq(gc, v)? (Containment)
Subseq(gc, u) = X7 (Universality)



Problems for Gap Constrained Subsequences

Matching

Input: u,v € ¥ k:=|v|, (k — 1)-tuple gc of gap constraints.

Question: v =g u?

Analysis Problems
Input: u,v € X* (k — 1)-tuple gc of gap constraints.
Questions:  Subseq(gc, u) = Subseq(gc, v)? (Equivalence)
Subseq(gc, u) C Subseq(gc, v)? (Containment)
Subseq(gc, u) = X7 (Universality)

Remark

k always means the length of subsequences!
(I.e., g¢Cc = (Cl, 000y Ckfl)-)

N



... regular constraints if every C; is a regular language.
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Types of Gap-Constraints

Gap constraints gc = (G, ..., C_1) are ...

... regular constraints if every C; is a regular language.

... length constraints if every C; = {v € ¥* | L=(i) < |v| < L™(i)} for some
L=(i), LT (i) e NUA{0, +oo}.
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Types of Gap-Constraints

Gap constraints gc = (G, ..., C_1) are ...

... regular constraints if every C; is a regular language.
(Represented as: DFAs.)

... length constraints if every C; = {v € T* | L (i) < |v| < LT (i)} for some
L= (i), LT(/) e NU {0, +o0}.

(Represented as: (L~(i), L*(i)) € N? in binary encoding.)

... reg-len constraints if every C; = C/N{v e T* | L~ (i) < |v| < LT(i)}.
(Represented as: ((L~ (i), L*(i)), A%), where A’ is DFA for C!.)
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Investigate the complexity of matching and analysis problems in the presence of gap
constraints.

14 /22



Research Questions

Main Research Question

Investigate the complexity of matching and analysis problems in the presence of gap
constraints.

Conditional Lower Bound Hypotheses

» Exponential Time Hypothesis (ETH):

No 2°(") poly(n + m) algo. for 3-Satisfiability.
» Strong Exponential Time Hypothesis (SETH):

Ve > 03k: No 0(2"(1=¢) poly(n)) algo. for k-Satisfiability.
» Orthogonal Vectors Hypothesis (OVH):

Ve > 0: No O(n?~¢poly(d)) algo. for OV.

N






The matching problem can be solved in time O(|ul|gc]).
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Complexity Bounds for Matching

Upper Bound

The matching problem can be solved in time O(|u||gc]).

Remark
For gap-constraints gc, let |gc| be

» the total number of the DFAs states, if gc are regular constraints or reg-len
constraints.

» the number of constraints with L™ (i) — L~ (/) > 0, if gc are length constraints.
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Complexity Bounds for Matching

Conditional Lower Bound

The matching problem cannot be solved in time O(|u|"|gc|€) with g + h =2 — € for
some € > 0 unless OVH fails.
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Conditional Lower Bound
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For length constraints: this even holds for || = 4 and length constraints (0, ¢) with
¢ <6.

For regular constraints: this even holds for || = 4 and all regular constraints are
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Complexity Bounds for Matching

Conditional Lower Bound

The matching problem cannot be solved in time O(|u|"|gc|€) with g + h =2 — € for
some € > 0 unless OVH fails.

For length constraints: this even holds for || = 4 and length constraints (0, ¢) with
¢ <6.

For regular constraints: this even holds for || = 4 and all regular constraints are
expressed by constant size DFAs.

Proof Sketch

Fine-grained reduction from the orthogonal vectors problem (OV).
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Complexity Bounds for Analysis Problems

Remark

We only discuss the non-universality problem with length constraints.
— We are checking Subseq(gc, u) # .
All results hold analogously for non-equivalence and non-containment.
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Complexity Bounds for Analysis Problems

Remark

We only discuss the non-universality problem with length constraints.
— We are checking Subseq(gc, u) # .

All results hold analogously for non-equivalence and non-containment.

Upper Bound

The non-universality problem can be solved in time O(|X|¥|gc||ul).
(Achieved by a brute force algorithm.)
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Complexity Bounds for Analysis Problems

Conditional Lower Bounds

For every fixed alphabet ¥ with |X| > 3, the non-universality problem with length
constraints can be solved in time 2°(K)|gc||u|. Moreover, it cannot be solved

» in subexponential time 2°(K) poly(|u|, k) (unless ETH fails),
> in time O(2%(1=) poly(|ul, k)) (unless SETH fails).

These lower bounds hold even if all length constraints are (1,5).
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Complexity Bounds for Analysis Problems

Conditional Lower Bounds

For every fixed alphabet ¥ with |X| > 3, the non-universality problem with length
constraints can be solved in time 2°(K)|gc||u|. Moreover, it cannot be solved

» in subexponential time 2°(K) poly(|u|, k) (unless ETH fails),
> in time O(2%(1=) poly(|ul, k)) (unless SETH fails).
These lower bounds hold even if all length constraints are (1,5).

Theorem

For every fixed alphabet ¥ with |X| = 2, non-universality with length constraints is
NP-complete even if each length constraint is (0,0) or (3,9).

Proof
Reduction from CNF-Sat.



Quick Overview

Classical | Gap Constraints
Matching O(n) O(|ul|gcl)
Equivalence O(n)
Containment | O(nm|Z|) | O(|X|*|gc||ul)
Universality O(n)
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Additional Results

Gap Length Equalities

In addition to gap constraints, we consider gap length equalities of the form
“|gap;| = |gap;|" meaning |gap.(w, )| = |gape(w,J)|-
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Additional Results

Gap Length Equalities

In addition to gap constraints, we consider gap length equalities of the form
“|gap;| = |gap;|" meaning |gap.(w, )| = |gape(w,J)|-
(Or even more complex variant: 2|gap7| + |gaps| < |gap2|.)

Theorem

Matching with gap constraints and gap length equalities is NP-complete even for
|X| = 2 and gap constraints C; = ¥*.

Proof
Reduction from 3-CNF-SAT.

)
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Subseq(2, abba) = {aa, ab, ba, bb}
Subseq(2, abab) = {aa, ab,ba,bb}
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Multiplicities

Sets of Gap Constrained Subsequences with Multiplicities:
Subseq(2, abba) = {aa, ab, ba, bb}
Subseq(2, abab) = {aa, ab, ba, bb}

Subseq™(2, abba) = {(aa, 1), (ab, 2), (ba, 2), (bb, 1)}
Subseq™(2, abab) = {(aa, 1), (ab, 3), (ba, 1), (bb, 1)}



Multiplicities

Sets of Gap Constrained Subsequences with Multiplicities:
Subseq(2, abba) = {aa, ab, ba, bb}
Subseq(2, abab) = {aa, ab, ba, bb}

Subseq™(2, abba) = {(aa, 1), (ab, 2), (ba, 2), (bb, 1)}
Subseq™(2, abab) = {(aa, 1), (ab, 3), (ba, 1), (bb, 1)}

Theorem

The equivalence problem for gap-constrained subsequences with multiplicities can be
decided in polynomial time.



Overview

The presented results and topics are also summarized in the survey paper presented at
NCMA, 2022:

Combinatorial Algorithms for Subsequence Matching: A Survey
(MK, Tore KoB, Florin Manea, Stefan Siemer)
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Overview

The presented results and topics are also summarized in the survey paper presented at
NCMA, 2022:

Combinatorial Algorithms for Subsequence Matching: A Survey
(MK, Tore KoB, Florin Manea, Stefan Siemer)

Thank you!
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Bonus

Theorem

The non-universality problem with length constraints cannot be solved in running time
O(f (k) poly(|w|, k)) for any computable function f (unless FPT = W[1]).

N
N
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