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Subsequences

Σ is a finite alphabet, e. g., Σ = {a, b, c, d}.

u = a b b a c b a b

u[1] u[2] u[3] u[4] u[5] u[6] u[7] u[8]

v = b b a

v [1] v [2] v [3]

Notation

Embedding: e : {1, . . . , |v |} → {1, . . . , |u|} with e(1) < . . . < e(|v |).
v �e u: e is an embedding with v [i ] = u[e(i)] ∀i ∈ {1, 2, . . . , |v |}.

v is subsequence of u (v � u) if there is some embedding e with v �e u.
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Subsequences

Set of Subsequences of length k

For given integer k and word w , let Subseq(k ,w) denote the set of subsequences of
length k of w .

Subseq(k ,w) = {v ∈ Σk | v �w}.

Example:

Subseq(3, abbacbab) = {aaa, aab, aac, aba, abb, abc, aca, acb,
baa, bab, bac , bba, bbb, bbc, bca, bcb,

cab, cba, cbb}

4 / 22



Subsequences in TCS

Subsequences are a central concept in many different areas of TCS:

I Formal languages and logics (piecewise testable languages, subword order and
downward closures).

I Combinatorics on words.

I Modelling concurrency.

I Database theory (event stream processing).

I Algorithms (longest common subsequence, shortest common supersequence).
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Computational Problems for Subsequences

Matching

Input: u, v ∈ Σ∗

Question: v � u?

Analysis Problems

Input: u, v ∈ Σ∗, k ∈ N
Questions: Subseq(k , u) = Subseq(k , v)? (Equivalence)

Subseq(k , u) ⊆ Subseq(k , v)? (Containment)
Subseq(k , u) = Σk? (Universality)
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Subsequence Problems are Simple
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Subsequence Problems are Simple

Observation

Matching is trivially solvable in linear time.

Observation

We can construct a DFA for Subseq(k , u) of size O(k |u|).
⇒ the analysis problems can be solved in polynomial time.

Theorem (Gawrychowski et al., STACS 2021)

Equivalence can be decided in linear time.

8 / 22



Subsequence Problems are Simple

Observation

Matching is trivially solvable in linear time.

Observation

We can construct a DFA for Subseq(k , u) of size O(k |u|).
⇒ the analysis problems can be solved in polynomial time.

Theorem (Gawrychowski et al., STACS 2021)

Equivalence can be decided in linear time.

8 / 22



Subsequence Problems are Simple

Observation

Matching is trivially solvable in linear time.

Observation

We can construct a DFA for Subseq(k , u) of size O(k |u|).
⇒ the analysis problems can be solved in polynomial time.

Theorem (Gawrychowski et al., STACS 2021)

Equivalence can be decided in linear time.

8 / 22



Subsequences with Gap Constraints



Shift from Classical Scenario to Gap Constraints

Classical subsequences . . .

. . . are usually considered with arbitrary embeddings.

For practical scenarios, it is reasonable to introduce gap constraints.

We restrict the length of gaps.

I Alignments of bio-sequences.

I Modelling single processor scheduling with fairness properties.

And we restrict allowed symbols that can occur in gaps.

I Complex event processing → forbidding events in specific positions of a
subsequence.
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u = a b c b c a b c a b a c

v = c a b a
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u = a b c b c a b c a b a c

v = c a b a

gape(u, i) = u[e(i) + 1..e(i + 1)− 1] i ∈ {1, . . . , |v | − 1}
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u = a b c b c a b c a b a c

v = c a b a

gape(u, 1) = bcabc

gape(u, 2) = ε

gape(u, 3) = ε

Gap constraints

gc = (C1, . . . ,C|v |−1), where Ci ⊆ Σ∗ for every i ∈ {1, . . . , |v | − 1}.
(tuple of gap constraints)
The embedding e satisfies gc w.r.t. v , if, for every i ∈ [|v | − 1], gape(u, i) ∈ Ci .
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Gap Constraints

Notations

v �gc u: v �e u for some embedding e satisfying gc .
(v is a gc-subsequence of u)

Subseq(gc , u) = {v ∈ Σ|gc|+1 | v �gc u} .

Example

gc = (C1,C2) with C1 = C2 = {a, b, c}

Subseq(gc , abbacbab) = {abc, bab, bca, abb} .
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Problems for Gap Constrained Subsequences

Matching

Input: u, v ∈ Σ∗, k := |v |, (k − 1)-tuple gc of gap constraints.
Question: v �gc u?

Analysis Problems

Input: u, v ∈ Σ∗, (k − 1)-tuple gc of gap constraints.
Questions: Subseq(gc , u) = Subseq(gc , v)? (Equivalence)

Subseq(gc , u) ⊆ Subseq(gc , v)? (Containment)
Subseq(gc , u) = Σk? (Universality)

Remark

k always means the length of subsequences!
(I. e., gc = (C1, . . . ,Ck−1).)
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Types of Gap-Constraints

Gap constraints gc = (C1, . . . ,Ck−1) are . . .

. . . regular constraints if every Ci is a regular language.

(Represented as: DFAs.)

. . . length constraints if every Ci = {v ∈ Σ∗ | L−(i) ≤ |v | ≤ L+(i)} for some
L−(i), L+(i) ∈ N ∪ {0,+∞}.

(Represented as: (L−(i), L+(i)) ∈ N2 in binary encoding.)

. . . reg-len constraints if every Ci = C ′i ∩ {v ∈ Σ∗ | L−(i) ≤ |v | ≤ L+(i)}.

(Represented as: ((L−(i), L+(i)),A′i ), where A′i is DFA for C ′i .)
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Research Questions

Main Research Question

Investigate the complexity of matching and analysis problems in the presence of gap
constraints.

Conditional Lower Bound Hypotheses

I Exponential Time Hypothesis (ETH):
No 2o(n) poly(n + m) algo. for 3-Satisfiability.

I Strong Exponential Time Hypothesis (SETH):
∀ε > 0∃k : No O(2n(1−ε) poly(n)) algo. for k-Satisfiability.

I Orthogonal Vectors Hypothesis (OVH):
∀ε > 0: No O(n2−ε poly(d)) algo. for OV.
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Complexity Bounds for Matching



Complexity Bounds for Matching

Upper Bound

The matching problem can be solved in time O(|u||gc |).

Remark

For gap-constraints gc , let |gc | be

I the total number of the DFAs states, if gc are regular constraints or reg-len
constraints.

I the number of constraints with L+(i)− L−(i) > 0, if gc are length constraints.
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Complexity Bounds for Matching

Conditional Lower Bound

The matching problem cannot be solved in time O(|u|h|gc |g ) with g + h = 2− ε for
some ε > 0 unless OVH fails.

For length constraints: this even holds for |Σ| = 4 and length constraints (0, `) with
` ≤ 6.

For regular constraints: this even holds for |Σ| = 4 and all regular constraints are
expressed by constant size DFAs.

Proof Sketch

Fine-grained reduction from the orthogonal vectors problem (OV).
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Complexity Bounds for Analysis Problems

Remark

We only discuss the non-universality problem with length constraints.
→ We are checking Subseq(gc , u) 6= Σk .

All results hold analogously for non-equivalence and non-containment.

Upper Bound

The non-universality problem can be solved in time O(|Σ|k |gc ||u|).
(Achieved by a brute force algorithm.)
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Complexity Bounds for Analysis Problems

Conditional Lower Bounds

For every fixed alphabet Σ with |Σ| ≥ 3, the non-universality problem with length
constraints can be solved in time 2O(k)|gc ||u|. Moreover, it cannot be solved

I in subexponential time 2o(k) poly(|u|, k) (unless ETH fails),

I in time O(2k(1−ε) poly(|u|, k)) (unless SETH fails).

These lower bounds hold even if all length constraints are (1, 5).

Theorem

For every fixed alphabet Σ with |Σ| = 2, non-universality with length constraints is
NP-complete even if each length constraint is (0, 0) or (3, 9).

Proof

Reduction from CNF-Sat.
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Quick Overview

Classical Gap Constraints

Matching O(n) O(|u||gc |)
Equivalence O(n)
Containment O(nm|Σ|) O(|Σ|k |gc ||u|)
Universality O(n)
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Additional Results

Gap Length Equalities

In addition to gap constraints, we consider gap length equalities of the form
“|gapi | = |gapj |” meaning |gape(w , i)| = |gape(w , j)|.

(Or even more complex variant: 2|gap7|+ |gap3| ≤ |gap2|.)

Theorem

Matching with gap constraints and gap length equalities is NP-complete even for
|Σ| = 2 and gap constraints Ci = Σ∗.

Proof

Reduction from 3-CNF-SAT.
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Multiplicities

Sets of Gap Constrained Subsequences with Multiplicities:

Subseq(2, abba) = {aa, ab, ba, bb}
Subseq(2, abab) = {aa, ab, ba, bb}

Subseqm(2, abba) = {(aa, 1), (ab, 2), (ba, 2), (bb, 1)}
Subseqm(2, abab) = {(aa, 1), (ab, 3), (ba, 1), (bb, 1)}

Theorem

The equivalence problem for gap-constrained subsequences with multiplicities can be
decided in polynomial time.
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Subseqm(2, abab) = {(aa, 1), (ab, 3), (ba, 1), (bb, 1)}

Theorem

The equivalence problem for gap-constrained subsequences with multiplicities can be
decided in polynomial time.
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Overview

The presented results and topics are also summarized in the survey paper presented at
NCMA, 2022:

Combinatorial Algorithms for Subsequence Matching: A Survey
(MK, Tore Koß, Florin Manea, Stefan Siemer)

Thank you!
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Bonus

Theorem

The non-universality problem with length constraints cannot be solved in running time
O(f (k) poly(|w |, k)) for any computable function f (unless FPT = W[1]).

22 / 22


	Classical Subsequences
	Subsequences

	Subsequences with Gap Constraints
	Complexity Bounds for Matching
	Complexity Bounds for Analysis Problems

