Subsequences With Gap Constraints: Complexity Bounds for Matching and Analysis Problems

Joel D. Day ¹ Maria Kosche ² Florin Manea ² Markus Schmid ³

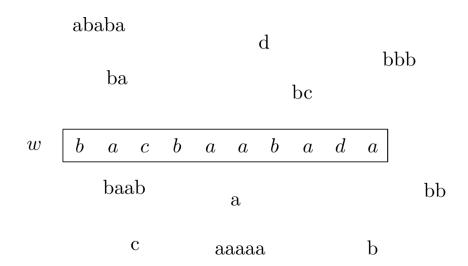
¹Loughborough University, UK

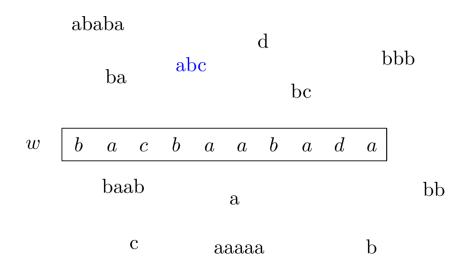
²Göttingen University, Germany

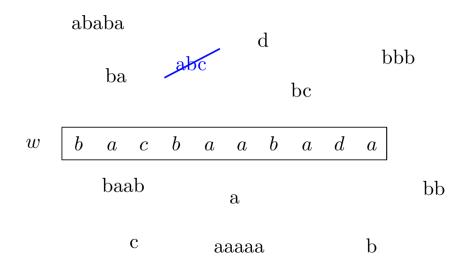
³Humboldt University of Berlin, Germany

16th International Conference on Reachability Problems 17 – 19 October 2022 Kaiserslautern

Classical Subsequences





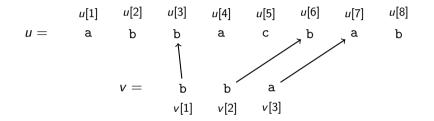


 Σ is a finite alphabet, e.g., $\Sigma = \{a,b,c,d\}.$

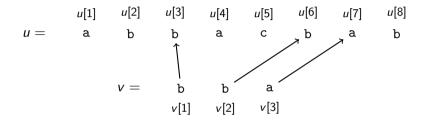
$$u = a b b a c b a b$$

$$v = b b a v[1] v[2] v[3]$$

 Σ is a finite alphabet, e.g., $\Sigma = \{ a, b, c, d \}.$



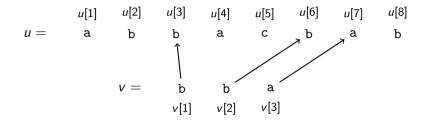
 Σ is a finite alphabet, e.g., $\Sigma = \{a,b,c,d\}.$



Notation

Embedding: $e : \{1, \ldots, |v|\} \rightarrow \{1, \ldots, |u|\}$ with $e(1) < \ldots < e(|v|)$.

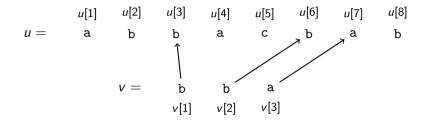
 Σ is a finite alphabet, e.g., $\Sigma = \{a,b,c,d\}.$



Notation

Embedding:
$$e: \{1, \ldots, |v|\} \rightarrow \{1, \ldots, |u|\}$$
 with $e(1) < \ldots < e(|v|)$.
 $v \leq_e u$: e is an embedding with $v[i] = u[e(i)] \forall i \in \{1, 2, \ldots, |v|\}$.

 Σ is a finite alphabet, e.g., $\Sigma = \{ a, b, c, d \}.$



Notation

Embedding: $e : \{1, \ldots, |v|\} \rightarrow \{1, \ldots, |u|\}$ with $e(1) < \ldots < e(|v|)$. $v \leq_e u$: e is an embedding with $v[i] = u[e(i)] \forall i \in \{1, 2, \ldots, |v|\}$.

v is subsequence of u ($v \leq u$) if there is some embedding e with $v \leq_e u$.

Set of Subsequences of length k

For given integer k and word w, let Subseq(k, w) denote the set of subsequences of length k of w.

$$Subseq(k, w) = \{v \in \Sigma^k \mid v \leq w\}.$$

Example:

```
Subseq(3, abbacbab) = {aaa, aab, aac, aba, abb, abc, aca, acb,
baa, bab, bac, bba, bbb, bbc, bca, bcb,
cab, cba, cbb}
```

Subsequences are a central concept in many different areas of TCS:

- Formal languages and logics (piecewise testable languages, subword order and downward closures).
- Combinatorics on words.
- Modelling concurrency.
- Database theory (event stream processing).
- Algorithms (longest common subsequence, shortest common supersequence).

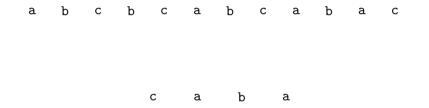
Computational Problems for Subsequences

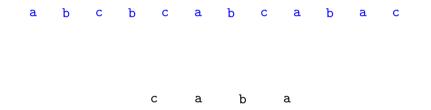
Matching	
Input:	$u, v \in \Sigma^*$
Question:	$v \preceq u$?

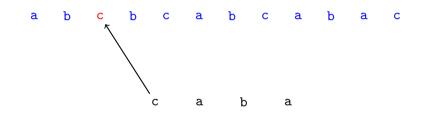
Matching			
Input: Question:			

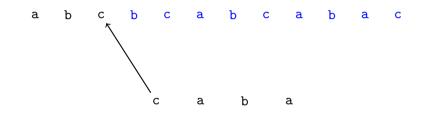
Analysis Problems

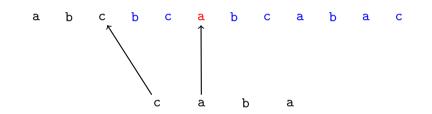
Input:	$u,v\in\Sigma^*$, $k\in\mathbb{N}$	
Questions:	Subseq(k, u) = Subseq(k, v)?	(Equivalence)
	$Subseq(k, u) \subseteq Subseq(k, v)$?	(Containment)
	$Subseq(k, u) = \Sigma^k$?	(Universality)

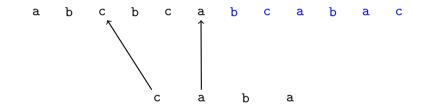


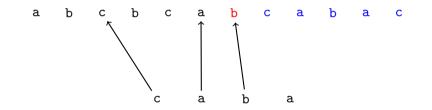


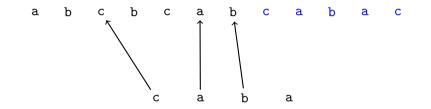


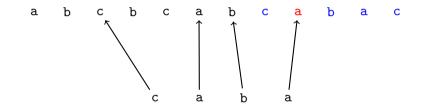


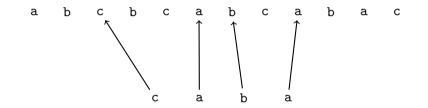












Observation

Matching is trivially solvable in linear time.

Observation

Matching is trivially solvable in linear time.

Observation

We can construct a DFA for Subseq(k, u) of size O(k|u|). \Rightarrow the analysis problems can be solved in polynomial time.

Observation

Matching is trivially solvable in linear time.

Observation

We can construct a DFA for Subseq(k, u) of size O(k|u|). \Rightarrow the analysis problems can be solved in polynomial time.

Theorem (Gawrychowski et al., STACS 2021)

Equivalence can be decided in linear time.

Subsequences with Gap Constraints

Classical subsequences . . .

... are usually considered with arbitrary embeddings.

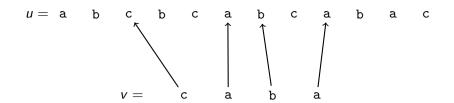
For practical scenarios, it is reasonable to introduce gap constraints.

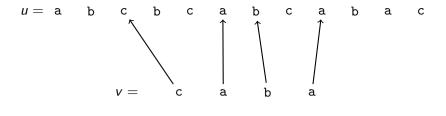
We restrict the length of gaps.

- Alignments of bio-sequences.
- Modelling single processor scheduling with fairness properties.

And we restrict allowed symbols that can occur in gaps.

► Complex event processing → forbidding events in specific positions of a subsequence.

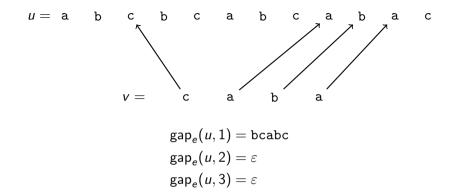


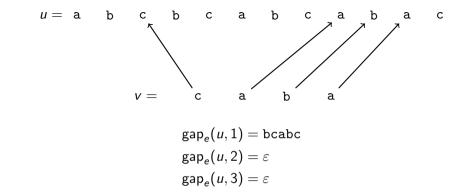


 $gap_e(u,i) = u[e(i) + 1..e(i+1) - 1]$ $i \in \{1, ..., |v| - 1\}$

$$u = a \quad b \quad c \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad a \quad c$$

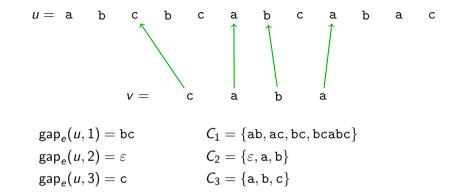
 $v = c \quad a \quad b \quad a$
 $gap_e(u, 1) = bc$
 $gap_e(u, 2) = \varepsilon$
 $gap_e(u, 3) = c$





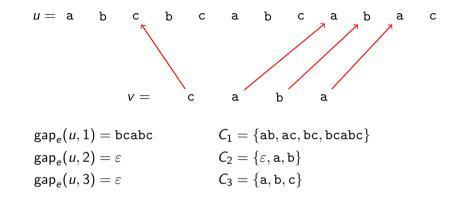
Gap constraints

 $gc = (C_1, \ldots, C_{|v|-1})$, where $C_i \subseteq \Sigma^*$ for every $i \in \{1, \ldots, |v|-1\}$. (tuple of gap constraints) The embedding *e satisfies gc w.r.t. v*, if, for every $i \in [|v|-1]$, $gap_e(u, i) \in C_i$.



Gap constraints

 $gc = (C_1, \ldots, C_{|v|-1})$, where $C_i \subseteq \Sigma^*$ for every $i \in \{1, \ldots, |v|-1\}$. (tuple of gap constraints) The embedding *e satisfies gc w.r.t. v*, if, for every $i \in [|v|-1]$, $gap_e(u, i) \in C_i$.



Gap constraints

 $gc = (C_1, \ldots, C_{|v|-1})$, where $C_i \subseteq \Sigma^*$ for every $i \in \{1, \ldots, |v|-1\}$. (tuple of gap constraints) The embedding *e satisfies gc w.r.t. v*, if, for every $i \in [|v|-1]$, $gap_e(u, i) \in C_i$.

Gap Constraints

Notations

 $v \preceq_{gc} u: v \preceq_{e} u$ for some embedding *e* satisfying *gc*. (*v* is a *gc*-subsequence of *u*)

Gap Constraints

Notations

 $v \preceq_{gc} u: v \preceq_{e} u$ for some embedding *e* satisfying *gc*. (*v* is a *gc*-subsequence of *u*)

$$Subseq(gc, u) = \{v \in \Sigma^{|gc|+1} \mid v \preceq_{gc} u\}.$$

Gap Constraints

Notations

 $v \leq_{gc} u$: $v \leq_{e} u$ for some embedding e satisfying gc. (v is a gc-subsequence of u)

$$Subseq(gc, u) = \{v \in \Sigma^{|gc|+1} \mid v \preceq_{gc} u\}.$$

Example

 $gc = (C_1, C_2)$ with $C_1 = C_2 = \{a, b, c\}$

 $Subseq(gc, abbacbab) = \{abc, bab, bca, abb\}.$

Problems for Gap Constrained Subsequences

Matching

Input: $u, v \in \Sigma^*$, k := |v|, (k - 1)-tuple gc of gap constraints. Question: $v \preceq_{gc} u$?

Problems for Gap Constrained Subsequences

Matching

Analysis Problems

Input:	$u,v\in\Sigma^*$, $(k-1)$ -tuple gc of ga	ap constraints.
Questions:	Subseq(gc, u) = Subseq(gc, v)?	(Equivalence)
	$Subseq(gc, u) \subseteq Subseq(gc, v)$?	(Containment)
	$Subseq(gc, u) = \Sigma^k?$	(Universality)

Problems for Gap Constrained Subsequences

Matching

Analysis Problems

Input:	$u,v\in\Sigma^*$, $(k-1)$ -tuple gc of ga	ap constraints.
Questions:	Subseq(gc, u) = Subseq(gc, v)?	(Equivalence)
	$Subseq(gc, u) \subseteq Subseq(gc, v)$?	(Containment)
	$Subseq(gc, u) = \Sigma^k?$	(Universality)

Remark

k always means the length of subsequences! (I. e., $gc = (C_1, \ldots, C_{k-1})$.)

 \ldots regular constraints if every C_i is a regular language.

 \ldots regular constraints if every C_i is a regular language.

... length constraints if every $C_i = \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$ for some $L^-(i), L^+(i) \in \mathbb{N} \cup \{0, +\infty\}.$

 \ldots regular constraints if every C_i is a regular language.

... length constraints if every $C_i = \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$ for some $L^-(i), L^+(i) \in \mathbb{N} \cup \{0, +\infty\}.$

... reg-len constraints if every $C_i = C'_i \cap \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$.

... regular constraints if every C_i is a regular language. (Represented as: DFAs.)

... length constraints if every $C_i = \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$ for some $L^-(i), L^+(i) \in \mathbb{N} \cup \{0, +\infty\}.$

... reg-len constraints if every $C_i = C'_i \cap \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$.

... regular constraints if every C_i is a regular language. (Represented as: DFAs.)

... length constraints if every $C_i = \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$ for some $L^-(i), L^+(i) \in \mathbb{N} \cup \{0, +\infty\}$. (Represented as: $(L^-(i), L^+(i)) \in \mathbb{N}^2$ in binary encoding.)

... reg-len constraints if every $C_i = C'_i \cap \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$.

... regular constraints if every C_i is a regular language. (Represented as: DFAs.)

... length constraints if every $C_i = \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$ for some $L^-(i), L^+(i) \in \mathbb{N} \cup \{0, +\infty\}$. (Represented as: $(L^-(i), L^+(i)) \in \mathbb{N}^2$ in binary encoding.)

... reg-len constraints if every $C_i = C'_i \cap \{v \in \Sigma^* \mid L^-(i) \le |v| \le L^+(i)\}$. (Represented as: $((L^-(i), L^+(i)), A'_i)$, where A'_i is DFA for C'_i .)

Main Research Question

Investigate the complexity of matching and analysis problems in the presence of gap constraints.

Main Research Question

Investigate the complexity of matching and analysis problems in the presence of gap constraints.

Conditional Lower Bound Hypotheses

- Exponential Time Hypothesis (ETH): No 2^{o(n)} poly(n + m) algo. for 3-Satisfiability.
- Strong Exponential Time Hypothesis (SETH): ∀ε > 0∃k: No O(2^{n(1-ε)} poly(n)) algo. for k-Satisfiability.
- Orthogonal Vectors Hypothesis (OVH): ∀ε > 0: No O(n^{2-ε} poly(d)) algo. for OV.

Complexity Bounds for Matching

Upper Bound

The matching problem can be solved in time O(|u||gc|).

Upper Bound

The matching problem can be solved in time O(|u||gc|).

Remark

For gap-constraints gc, let |gc| be

- the total number of the DFAs states, if gc are regular constraints or reg-len constraints.
- the number of constraints with $L^+(i) L^-(i) > 0$, if gc are length constraints.

Conditional Lower Bound

The matching problem cannot be solved in time $O(|u|^h |gc|^g)$ with $g + h = 2 - \epsilon$ for some $\epsilon > 0$ unless OVH fails.

Conditional Lower Bound

The matching problem cannot be solved in time $O(|u|^h |gc|^g)$ with $g + h = 2 - \epsilon$ for some $\epsilon > 0$ unless OVH fails.

For length constraints: this even holds for $|\Sigma|=4$ and length constraints (0, $\ell)$ with $\ell\leq 6.$

For regular constraints: this even holds for $|\Sigma| = 4$ and all regular constraints are expressed by constant size DFAs.

Conditional Lower Bound

The matching problem cannot be solved in time $O(|u|^h |gc|^g)$ with $g + h = 2 - \epsilon$ for some $\epsilon > 0$ unless OVH fails.

For length constraints: this even holds for $|\Sigma|=4$ and length constraints (0, $\ell)$ with $\ell\leq 6.$

For regular constraints: this even holds for $|\Sigma| = 4$ and all regular constraints are expressed by constant size DFAs.

Proof Sketch

Fine-grained reduction from the orthogonal vectors problem (OV).

Complexity Bounds for Analysis Problems

Remark

We only discuss the **non-universality** problem with length constraints. \rightarrow We are checking $Subseq(gc, u) \neq \Sigma^k$.

All results hold analogously for non-equivalence and non-containment.

Remark

We only discuss the **non-universality** problem with length constraints. \rightarrow We are checking $Subseq(gc, u) \neq \Sigma^k$.

All results hold analogously for non-equivalence and non-containment.

Upper Bound

The non-universality problem can be solved in time $O(|\Sigma|^k |gc||u|)$. (Achieved by a brute force algorithm.)

Complexity Bounds for Analysis Problems

Conditional Lower Bounds

For every fixed alphabet Σ with $|\Sigma| \ge 3$, the non-universality problem with length constraints can be solved in time $2^{O(k)}|gc||u|$. Moreover, it cannot be solved

- in subexponential time $2^{o(k)} \operatorname{poly}(|u|, k)$ (unless ETH fails),
- in time $O(2^{k(1-\epsilon)} \operatorname{poly}(|u|, k))$ (unless SETH fails).

These lower bounds hold even if all length constraints are (1,5).

Complexity Bounds for Analysis Problems

Conditional Lower Bounds

For every fixed alphabet Σ with $|\Sigma| \ge 3$, the non-universality problem with length constraints can be solved in time $2^{O(k)}|gc||u|$. Moreover, it cannot be solved

- in subexponential time $2^{o(k)} poly(|u|, k)$ (unless ETH fails),
- in time $O(2^{k(1-\epsilon)} \operatorname{poly}(|u|, k))$ (unless SETH fails).

These lower bounds hold even if all length constraints are (1,5).

Theorem

For every fixed alphabet Σ with $|\Sigma| = 2$, non-universality with length constraints is NP-complete even if each length constraint is (0,0) or (3,9).

Proof

Reduction from CNF-Sat.

	Classical	Gap Constraints
Matching	<i>O</i> (<i>n</i>)	O(u gc)
Equivalence	<i>O</i> (<i>n</i>)	
Containment	$O(nm \Sigma)$	$O(\Sigma ^k gc u)$
Universality	O(n)	

Gap Length Equalities

In addition to gap constraints, we consider gap length equalities of the form " $|gap_i| = |gap_j|$ " meaning $|gap_e(w, i)| = |gap_e(w, j)|$.

Gap Length Equalities

In addition to gap constraints, we consider gap length equalities of the form " $|gap_i| = |gap_j|$ " meaning $|gap_e(w, i)| = |gap_e(w, j)|$.

(Or even more complex variant: $2|gap_7| + |gap_3| \le |gap_2|$.)

Gap Length Equalities

In addition to gap constraints, we consider gap length equalities of the form " $|gap_i| = |gap_j|$ " meaning $|gap_e(w, i)| = |gap_e(w, j)|$.

(Or even more complex variant: $2|gap_7| + |gap_3| \le |gap_2|$.)

Theorem

Matching with gap constraints and gap length equalities is NP-complete even for $|\Sigma| = 2$ and gap constraints $C_i = \Sigma^*$.

Proof

Reduction from 3-CNF-SAT.

Sets of Gap Constrained Subsequences with Multiplicities:

```
Subseq(2, abba) = \{aa, ab, ba, bb\}
Subseq(2, abab) = \{aa, ab, ba, bb\}
```

Sets of Gap Constrained Subsequences with Multiplicities:

 $\begin{aligned} & Subseq(2, abba) = \{aa, ab, ba, bb\} \\ & Subseq(2, abab) = \{aa, ab, ba, bb\} \\ & Subseq^m(2, abba) = \{(aa, 1), (ab, 2), (ba, 2), (bb, 1)\} \\ & Subseq^m(2, abab) = \{(aa, 1), (ab, 3), (ba, 1), (bb, 1)\} \end{aligned}$

Sets of Gap Constrained Subsequences with Multiplicities:

 $Subseq(2, abba) = \{aa, ab, ba, bb\}$ $Subseq(2, abab) = \{aa, ab, ba, bb\}$ $Subseq^{m}(2, abba) = \{(aa, 1), (ab, 2), (ba, 2), (bb, 1)\}$ $Subseq^{m}(2, abab) = \{(aa, 1), (ab, 3), (ba, 1), (bb, 1)\}$

Theorem

The equivalence problem for gap-constrained subsequences with multiplicities can be decided in polynomial time.

The presented results and topics are also summarized in the survey paper presented at NCMA, 2022:

Combinatorial Algorithms for Subsequence Matching: A Survey (MK, Tore Koß, Florin Manea, Stefan Siemer) The presented results and topics are also summarized in the survey paper presented at NCMA, 2022:

Combinatorial Algorithms for Subsequence Matching: A Survey (MK, Tore Koß, Florin Manea, Stefan Siemer)

Thank you!

Theorem

The non-universality problem with length constraints cannot be solved in running time $O(f(k) \operatorname{poly}(|w|, k))$ for any computable function f (unless $\operatorname{FPT} = W[1]$).