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Given a graph G = (V;, E;) a clique is a subset of
vertices § C V; such that

e Fach pair of distinct vertices u, v € § are adjacent.

* |n other words, a clique G = (8§, Ef;) is a complete
subgraph of G.

‘ € set

contains. disi(@.@) = |

* [he size of a cligue I1s the number of vertices It
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By using the concepts of antimetry and n-chain it is possible
to define and to investigate some properties of connectivity in a
sociometric group. It is shown that the number of elements in a
group, the number of antimetries, and the degree of connectivity
must satisfy certain inequalities. Using the ideas of connectivity, a

generalized concept of clique, called an =n-clique, is introduced.
n-cliques are shown to have a very close relationship to the existence
of cliques in an artificial structure defined on the same set of ele-
ments, thus permitting the determination of n-cliques by means of
the same simple matrix procedures used to obtain the clique struc-
tures. The presence of two or more m-cliques, where m is the num-
ber of elements in the group, is proved to mean an almost complete
splitting of the group.

1. Introduction

This paper is devoted to extending the theoretical and practical
mathematical results presented in an earlier paper (3). In that pa-
per it was shown that certain elementary matrix operations permit,
to some extent, an analysis of the simple type of psychological group
structure which is often expressed by a sociometric diagram. Spe-
cifically, we envisage a finite set of m (> 2) elements 7, 7, k, ---
having a structure defined on them as follows: For any two elements
1 and 7 of the set there either exists or does not exist some one type
of “directional” relationship from 7 to j. This one type of relation-
ship on the group may assume various forms such as communication
or friendship; and so to acquire generality in the discussion we shall
speak of an antimetry from 1 to §. Then communication is merely
a special type of antimetry. It is arbitrarily assumed that no anti-
metry can exist from an element ¢ to itself. By “directional” is
meant that knowing of the existence or non-existence of an anti-
metry from 7 to 5 does not give any information about the existence
or non-existence of an antimetry from j to ¢. For example, if the
form of the antimetry is ‘4 communicates to j,” then the specific
knowledge that a can communicate to b does not tell us, in general,
whether b can communicate to a .
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A GRAPH-THEORETIC DEFINITION OF A
SOCIOMETRIC CLIQUE *

RICHARD D. ALBA

Columbia University

The intent of this paper is to provide a definition of a sociometric clique in the language of graph
theory. This problem is viewed from two perspectives: maintaining fidelity to the intuitive notion of
a clique; and providing adequate computational mechanics for large bodies of data. Luce's (1950)
concept of an K-clique is used, but further qualifications are added. Two statistics or measures with
associated probability distributions are defined for testing the adequacy of a subgraph which qualifies
according to the definition.

1. INTRODUCTION

One of the factors which has most confused the discussion of sociometric clique
identification in large bodies of data is the absence of a formal definition of a clique.
Luce and Perry (1949) and Luce (1950) are the only well-known sources for such a
formalization, and their attempts have not been followed out in the literature. Rather,
more recent attempts to satisfactorily identify cliques have employed ad hoc clustering
or taxonomic procedures which allow the data to suggest natural groupings. Notable
among these are the approaches of MacRae (1960), Coleman and MacRae (1960),
and Hubbel (1965).

One difficulty in the approach of Luce and Perry (1949) and Luce (1950) was that
an adequate computational procedure to locate subsets of the data which satisfied
their criteria was lacking. Recent computational literature, such as Bonner (1963)
and especially Auguston and Minker (1970), contains algorithms which can be used
to identify these subsets in reasonably large bodies of data (whose sizes are on the
order of 100 to 1000 individuals).

Other difficulties, however, remain. The definition in Luce and Perry (1949), in
which a clique is defined as a maximal complete subgraph, is too stringent for most
purposes. The concept of n-clique, as presented in Luce (1950), may provide a suitable
basis for a formalization but its properties must be explored further before any
judgment can be made.

The intent of this paper is to provide a suitable definition of a sociometric clique.

*A version of this paper was read at the 1972 meetings of the American Sociological
Association in New Orleans. This paper was prepared under National Science Foundation Grant GS
3231 to Professor Charles Kadushin of Teachers College, Columbia University. I am grateful for the
comments of Professor Kadushin, as well as those of Dr. Kenneth Land of the Russell Sage
Foundation and Professor Seymour Spilerman of the University of Wisconsin to a draft of this paper. |
particularly want to thank Dr. Tom Louis of Columbia University for his help in formulating the
applications of probability theory in this paper.
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Espinosa—Curiel, I.E,, Rodriguez—Jacobo, |., Vazquez—-Alfaro, k., Ferndndez-Zepeda, J.A. and Fajardo-Delgado, D., 2018. Analysis of the changes in communication and social interactions
during the transformation of a traditional team into an agile team. Journal of Software: Evolution and Process, 30(9), p.e | 946.



CLIQUE RELAXATIONS

PSYCHOMETRIKA—VOL. 15, NO. 2
JUNE, 1950

CONNECTIVITY AND GENERALIZED CLIQUES IN
SOCIOMETRIC GROUP STRUCTURE

R. DUNCAN LUCE

GRADUATE STUDENT, DEPARTMENT OF MATHEMATICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

By using the concepts of antimetry and n-chain it is possible
to define and to mvestxgate some properties of connectivity in a
sociometric group. It is shown that the number of elements in a
group, the number of antimetries, and the degree of connectxvny
must satisfy certain inequalities. Using thge ’
generalized concept of clique, called a
n-cliques are shown to have a very close rg
of cliques in an artificial structure define
ments, thus permitting the determination
the same simple matrix procedures used
tures. The presence of two or more m-clig
ber of elements in the group, is proved to
splitting of the group.

1. Introductio

This paper is devoted to extending {
mathematical results presented in an ear
per it was shown that certain elementa
to some extent, an analysis of the simple
structure which is often expressed by a sociometric diagram. Spe-
cifically, we envisage a finite set of m (> 2) elements 7, 7, k&,
having a structure defined on them as follows: For any two elements
1 and 7 of the set there either exists or does not exist some one type
of “directional” relationship from 7 to j. This one type of relation-
ship on the group may assume various forms such as communication
or friendship; and so to acquire generality in the discussion we shall
speak of an antimetry from 1 to §. Then communication is merely
a special type of antimetry. It is arbitrarily assumed that no anti-
metry can exist from an element ¢ to itself. By “directional” is
meant that knowing of the existence or non-existence of an anti-
metry from 7 to 5 does not give any information about the existence
or non-existence of an antimetry from j to ¢. For example, if the
form of the antimetry is ‘4 communicates to j,” then the specific
knowledge that a can communicate to b does not tell us, in general,
whether b can communicate to a .

169

enumeration...)

Journal of Mathematical Sociology © Gordon and Breach Science Publisher:
1973 Vol. 3, pp 113-126 Printed in Birkenhead, Englanc

A GRAPH-THEORETIC DEFINITION OF A
SOCIOMETRIC CLIQUE *

RICHARD D. ALBA

Columbia University

The intent of this paper is to provide a definition of a sociometric clique in the language of graph
theory. This problem is viewed from two perspectives: maintaining fidelity to the intuitive notion of
a clique; and providing adequate computational mechanics for large bodies of data. Luce's (1950)
concept of an K-chque is used but further qualifications are added. Two statistics or measures with

; ” giamigie defined for testing the adequacy of a subgraph which qualifies

Clique PFObIem INTRODUCTION
(maximum, maximal,

pst confused the discussion of sociometric clique
ta 1s the absence of a formal definition of a clique.
1950) are the only well-known sources for such a
ave not been followed out 1n the literature. Rather,
ly identify cliques have employed ad hoc clustering
low the data to suggest natural groupings. Notable

If Luce and Perry (1949) and Luce (1950) was that

a1 procedure to locate subsets of the data which satisfied
thelr criteria was lacking. Recent computational literature, such as Bonner (1963)
and especially Auguston and Minker (1970), contains algorithms which can be used
to identify these subsets in reasonably large bodies of data (whose sizes are on the
order of 100 to 1000 individuals).

Other difficulties, however, remain. The definition in Luce and Perry (1949), in
which a clique is defined as a maximal complete subgraph, is too stringent for most
purposes. The concept of n-clique, as presented in Luce (1950), may provide a suitable
basis for a formalization but its properties must be explored further before any
judgment can be made.

The intent of this paper is to provide a suitable definition of a sociometric clique.

*A version of this paper was read at the 1972 meetings of the American Sociological
Association in New Orleans. This paper was prepared under National Science Foundation Grant GS
3231 to Professor Charles Kadushin of Teachers College, Columbia University. I am grateful for the
comments of Professor Kadushin, as well as those of Dr. Kenneth Land of the Russell Sage
Foundation and Professor Seymour Spilerman of the University of Wisconsin to a draft of this paper. |
particularly want to thank Dr. Tom Louis of Columbia University for his help in formulating the
applications of probability theory in this paper.

113

pf MacRae (1960), Coleman and MacRae (1960),

ROYAL
HOLLOWAY

e Luce, RD, 1950. Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15(2), pp.169-190.
* Alba, RD., 1973. A graph—theoretic definition of a sociometric clique. Journal of Mathematical Sociology, 3(1), pp.1 | 3-126.



S-CLIQUE <o SRR

Given a graph G = (V, E;), an s-clique is a subset of
vertices § € V; such that:

* [he distance between each pair of distinct vertices
u,v € S is at most s edges long.

- dist(u,v) < s

dist(u,v) <1

‘ € set

Luce, RD,, 1950. Connectivity and generalized cliques in sociometric group structure. Psychometrika, |5(2), pp.169-190.
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Input graph:

2
G=(V.E,.) S5°{b,c.d,e,f}
(@ fa}

dist(d, e) uses edges
® < (d.f). (fe)}
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Clique problem

(maximum, maximal,
enumeration...)




Clique-related
s-club
models




APPLICATIONS AND EXTENSIONS o L R

Protein to protein maps

(Wasserman et al,, 19594) Biological networks Gene co-expression network

Biological networks

Protein interacticn networks
(Scott, 2000) _ .
— Tightly knit subgroups , o
N Collaborative distance and

(Wasser et al, 1994)

bl '/ . . . Erdds number
Apphcat‘ons and Collaboration networks Vs

\ Team formation problem

Epidemiclogy of sexually transmitted diseases >
-P & extensions
(Rothenberg et al, [996)

L Communicaticn/sensors
Organisational management
(Dekker;, 2000) , Transportations and supply
Sociology :
networks
General clusters

Social networks

(Berry et. al, 2004)

(Sageman, 201 1)

Crime detection/prevention - (Moradi y Balasundaram, 2018) Finance networks

(Sampson et. al, | 989)

- (Shahinpour y Butenko, 2013)

Power grid

(Memon et. al, 200/)

- (Pattillo et. al., 2013)




Clique-related
s-club
models




k-core s-clique

k-block s-clan
i - models
(4, y)-quasi-clique s-plex
k-hereditary s-club s-defective-clique




FRAMEWORK

Absolute / Relative

Standard / Weak

Taxonomic
framework

(Shahinpour and Butenko,
2013)

Structural / Statistical

Order

Pattillo, J., Youssef, N. and Butenko, S., 201 3. On clique relaxation models in network analysis. European
Journal of Operational Research, 226( 1), pp.9-18.

v

St.

ler,
2do,

Uses absolute parameter values (s or k)

Replaces s ork by y[S|, 0<y < 1.

A property 11 holds in G[S]
A property Il holds in G

All members of the set satisfy the property I1.

The members of the set satisfy, on average, the
property I1.

[t 1s the clique problem
't relaxes one of the above characteristics

't relaxes two of the above characteristics
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THE MAXIMUM S$-CLIQUE PROBLEM R

HOLLOWAY

ON TREES (THIS TALK)

s-clique problem K
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STRATEGY

@ Row | Size

Pointer

H ) —

emhun-so

(k) h
& © B O (8)
OO

Let 1" = (VT, ET) be a tree graph,
v € Vrand s an integer.

For this example, consider s = 5

HOLLOWAY

Fach vertex v has an associated table with the following:
e s+ 1 rows
e 2 columns: Size and Pointer
If v is a leaf vertex, trivial case:
t.table[row] . size < 1,Vrow € [s]

Otherwise, there are four cases:

e row =0
S
s 1 <row< 5
)
o |I= | <row<s—1
_2_
°* rOoW =§
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Fach vertex v has an associated table with the following:

@ Row | Size |Polnter e s+ 1 rows

e 7 columns: Size and Pointer

n ) =
(k) h
(4) (& (& & @ O Otherwise, there are four cases:
(i (} (1) row = 0

If v is a leaf vertex, trivial case:

emhun-c

t.table[row] . size < 1,Vrow € [s]

S
Let T = (VT, ET) be z.1tree oraph, | <row < 5
v € Vrand s an integer. o
2 <row<s-—1
For this example, consider s = 5 2
row = s



STRATEGY

Row

DN [= O

Row

WDIN = O

Row

WDIN = O

HOLLOWAY

Vwel,

Case : Action
) row =20 . a.table[0].size <« 1
..................
2)1 < row < 5 E a.table[row] . size <« 1 2 w.table[row — 1] . size
N B _2_ : weC,
.................. e e e e e e e e e e e e e m e mememaman
. total « 2 w.table[s — row — 1]
S : we
3) > <row <s— 1, et z
g . total —
- : a.tablelrow]. size < 1+£Vl?c(a{(W.table[s—row—1].Size+w.table[r0w—1].Size)
4) row = s E a.table[s].size <« 1 + max {w.table[s — 1].size

a.table[row] . size < max (a .table|row] . size,a . table[row — 1] .size), forl <row<s

Update a . table[row] . pointer < a .table[row — 1] . pointer, accordingly
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Vwel,

Case : Action
Row | Size | Pointer I) row = O : a . l‘Clblé[O] . Size <« 1
Ol 1 l; e, vertex a :
e 11 2 | +b.table[0].size €=y  mmmmmmmssmsmsmmmemeee- e LR LT L
2 3 1+ b.tablell].size : . .
3| 4 1 +b.table[2].size 2)1 < row < 5 ' a.table[row].size « 1 2 w.table[row — 1] . size
N B : 2 _ : weC,
Row | Size | Pointer :
o1 - T e
1 [ 2 '
e 1 fotal < 2 w.table[s — row — 1]
2 3 \) : YweC,
3[3 3) | =| <row<s—1,
9 L . _ total —
- : a.tablefrow]. size <1 + Jf}';"éa { (w .tablels — row — 1] . size + w . table[row — 1] .Size)
4) row = s E a.tablels].size < 1 + max {w.table[s — 1].size

a.table[row] . size < max (a .table|row] . size,a . table[row — 1] .size), forl <row<s

Update a . table[row] . pointer < a .table[row — 1] . pointer, accordingly
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Row | Size | Pointer
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|3
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LIV = O

Row | Size | rowter
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STRATEGY

Row | Size | Poinier
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Row | Size | Pointer
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Row | Size |Pointer
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CORRECTNESS AND ANALYSIS [ Bt

—

<
\t{

» Hilling In the table of each vertex V: ey O (s | C, | ) u.t.

e Traversals on the tree; =——————————> 0O(n) ut

* Jotal execution time: =———> (O(s5 - 1) ut



OTHER METHODOLOGIES e

Clique, arbitrary graph

Bron & Kerbosh, 1973 )
{ O(33) ut.

s-club, trees
Schafer; 2009 { ]
Exact O(s”+n) ut.
s-clique, trees
This work
{ O(s-n)ut

s-clique, arbitrary graph
{ Exponential

Power of a graph

Methodologies
for the s-clique

s-clique (clusters), arbitrary graph
Edachery, et, al., 1999
{ O(n

I ut.

Heuristics {

Behar & Cohen, 2018
{ ~ Bron y Kerbosh

Mathematical

formulation Arbitrary graph

{ Balasundaram, et, al., 2005% CPLEX

Small values for s
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HOLLOWAY

OUR PROPOSAL

Schdfer’s Our proposal

The maximum s-club The maximum s-clique ‘,
problem on trees problem on trees a/n\I
D
T(n) = O (s n) Tmy=0(-n) | T b b 1 j o
e ROgS 0 'Y

On trees: the s-clan, s-club,

and s-cligue problems are
equivalent

Schafer; A.: Exact algorithms for s-club finding and related problems. Ph.D. thesis, Friedrich-Schiller-University Jena (2009)
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‘ | T 5 161 = 12,761, | V| = 22, Prof. Brendan McKay.

@ T, a doubly logarithmic tree of height 5 (| V| = 119,041)

4,5,10, 15,20,
Data set @ T; alineartree (| V| = 10,000) s € {25.30. 100, 500,
1 000, 10000

0 Ty a full balanced binary tree with 21 leaves
where appropriate

e | T p, | =5,722, | V| = up to 297, PhylomeDB

G Tne6 forn € {0.3,0.5,0.75,1} and €6 = 10° nodes
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Table 2: Wall-clock running time of Schafer’s implementation and MAX-Ds'T
on the six cases of studies. We denote ‘timeouts’ and ‘not applicable’ by ‘—
and ‘n/a’, respectively.

Row Graph Running time in seconds ttSChéfer Row Graph Running time in seconds ttSChéfer
{Schafer IMAX-DsT Max-DsT {Schafer IMAX-DsT Max-DsT
1 T2 16 132.4492 60.8545 2.1 14 Teh 719.4773 185.4435 38 1@
2 Tp, s = 109.9832 1.8577 59.2 15 Th.3¢6, S = 10 1022.6843 9.4978 107.7
3 Tp, s=95 116.5945 1.5734 74.1 16 10.3¢6, s = 100 1439.42 17.3046 83.1
4 T, s =10 1.5289 0.5584 2.7 17 10.3¢6, s =900 | 5989.8246 74.7689 80.1
D T, s =100 12.6688 4.8969 2.5 18 T0h.506, S = 10 2945.4381 15.6059 188.7
6 T, s =1000 602.9626 45.2492 13.3 19 T0.5¢6, s =100 | 3654.6010 441117 82.8
\ 7 1I7,, s =10000 | 19859.2017 241.7339 82.1 20 T0.5¢6, s = 000 — 2661.9666 n/a
f 8 T, s=05 117.9299 2.0445 57.6 21 To.75¢6, S =10 | 6436.4398 22.7611 282.7 }G
9 Tp, s =10 121.7708 1.9870 61.2 22 | To75e6, s =100 | 7807.3684 94.7391 82.4
°< 10 ITp, s =15 125.8261 1.9811 63.5 23 | To.75¢6, s = 500 — 5 657.6981 n/a
11 Tp, s =20 125.4565 1.9592 64.0 24 Tie6, s = 10 11 529.7250 31.8786 361.6
12 Tp, s =25 126.7537 1.9809 63.9 25 Tie6, s = 100 14167.638 198.9311 71.2
|13 T, s =30 148.4265 1.9831 74.8 26 Tie6, s = 500 — 11422.2738 n/a ||

https://www.cs.rhul.ac.uk/home/uhac208/RP_2022/Experiments.html



A PHYLOGENETIC TREE - T

~hy000IPWO_CQRGK,
Phy000JVA9’ LACBI 0ONBSQ_RHIgy

Clade PhyOOOLOH8 PHYBL
Q Clade

PhyOOOKOON_LACBI PhyO001D5W_ARATH

Q Phy0008GEW_HUMAN

Phy000JVNQ_LAGR! Clade . .  Clade
Clade Clade

Clade. PhyOOOKSGT_ 383855 PhyOOOLPMW_PHYBL
Clade lade Clade Phy0008GGT_HUMAN

Phy000JVDO_LACBI PhyOO0H22C_BATDE

Q Clade
Phy000JTHG_bAdge! O O It can potentially help us

PhyOOOHNUI_PICGU Phy00080S6_K! . .
O Eiadd %OOOCZ*W@G‘“FW—SACF’A find relationships that we

O
Phy@0DJTPA RINOBPHQGY QRIS Ph¥PQROCYF_ASHGO (a4 :
Clade I e didn’t see before!

O Clad® Clade
Aci

Phy000JVUV_LACBI  Phy000JU4G_LACBI Phy000JRHE_KLUWlAde
ade

O Clade ()
PhyO0OKBTY_LODELClade PhyO0ONP7C_(SACBAy000067E_SACMI
O Clade PhyQA@4RMV_VANPO o de

Q Clade

PhyOOOMO9X_PICST
Phy000JVUZ_LACBI O Q 4 B PhERiE YHO_CANTR Q

RbqOJTVN_LACBI Clade Clade Q

O Phy0004498 CANGA Clade Phy000009W_SACKU
Phy000JVNR_LACBI Clade 0
Phy0002MES_CANA
Phy000OHIIJ_CANDU PhyOOONUGM_SACCA

https://www.cs.rhul.ac.uk/home/uhac208/RP_2022/Database.html
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) e Extend this dynamic programming approach for a
oroader graph family

e Preferably one with an underlying structure close
@ to a tree

e cordal graphs

* outerplanar graphs

@ 0 0 e bounded treewidth
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* [here could exist more than one path between
some palr of vertices

 Cycle-breaking strategy or some hierarchy-like
structure to avoid overlapping computations

2-club

e On other graphs, the s-clique, s-clan, and s-club
might not reflect equivalent problems.
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