Introduction 000	Edit Distance R 0000 C	Regular DOOOO	Repeated Variable	s Overview	Outlook 00
	Marah's Darres		\/		
	Watching Patter	rns with	variables	s under Edi	τ
		Distar	nce		
		Biotai			
	Paweł Gawrychowsk	i Florin	Manea S	stefan Siemer	
	T awer Gawryenowsk			Ceran Orenier	

University of Wrocław, Göttingen University

gawry@cs.uni.wroc.pl, florin.manea@cs.uni-goettingen.de, stefan.siemer@cs.uni-goettingen.de

RP 2022

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction	Edit Distance	Regular	Repeated Variables	Overview	Outlook
●00	0000	00000		00	00

Introduction

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction	Edit Distance	Regular	Repeated Variables	Overview	Outlook
○●○	0000	00000		00	00

Pattern Matching

Pattern Matching Problem

Find occurrences of a pattern α in a word w.

Example: $\alpha = bab$, w = aaaababbb

aaaababbb

bab

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Pattern Matching with Variables

Exact Matching Problem for P: Match_P Input: A pattern $\alpha \in P$, with $|\alpha| = m$, a word w, with |w| = n. Question: Is there a substitution h with $h(\alpha) = w$?

Outlook

Example: $\alpha = x_1 x_1 bab x_2 x_2$, w = aaaababbb

$\mathtt{x_1} \to \mathtt{aa}$	aaaababbb
$\mathtt{x}_2 \to b$	aaaababbb

Example: $\alpha = x_1 babx_2$, w = aaaababbb

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction	Edit Distance	Regular	Repeated Variables	Overview	Outlook
000	●000	00000		00	00

Edit Distance

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction 000	Edit Distance 0●00	Regular 00000	Repeated Variables	Overview 00	Outlook 00

Edit Distance

String metric

For words $u, w \in \Sigma^*$, the *edit distance* between u and w is defined as the minimal number $d_{ED}(u, w)$ of letter insertions, letter deletions, and letter to letter substitutions which one has to apply to u to obtain w.

Example: $u = abbab, w = baaba, \Delta = 3$

$$abbab \xrightarrow[deletion]{} bbab \xrightarrow[substitution]{} baab \xrightarrow[insertion]{} baaba$$

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Pattern Matching with Variables and Edit Distance

Approximate Matching Decision Problem for P: MisMatchPInput:A pattern $\alpha \in P$, with $|\alpha| = m$, a word w, with|w| = n, an integer $\Delta \leq m$.Question:Is $d_{\rm ED}(\alpha, w) \leq \Delta$?

Example: $\alpha = x_1x_1babx_2x_2$, w = aaababbb, $\Delta = 1$

$\mathtt{x_1} \to \mathtt{aa}$	aaaababbb
$\mathtt{x_2} \to b$	aaababbb

For Hamming Distance results see paper at MFCS 2021.

Pattern Matching with Variables and Edit Distance

Approximate Matching Minimisation Problem for P: MinMisMatch
PInput:A pattern $\alpha \in P$, with $|\alpha| = m$, a word w, with
|w| = n.Question:Compute $d_{\rm ED}(\alpha, w)$.

Example: $\alpha = x_1x_1babx_2x_2$, w = aaababbb

$\mathtt{x_1} ightarrow \mathtt{aa}$	aaaababbb
$\mathtt{x_2} \to b$	aaababbb

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction 000	Edit Distance 0000	Regular ●0000	Repeated Variables 0000	Overview 00	Outlook 00

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Repeated Variables

Overview 00 Outlook 00

Regular Pattern Definition

Definition

$$\alpha \in \text{Reg if } \alpha = w_0 \prod_{i=1}^{M} (x_i w_i), \text{ with } w_i \in \Sigma^{\star}.$$

Example: $\alpha = abx_1abx_2x_3baab$.

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction 000	Edit Distance 0000	Regular 00●00	Repeated Variables	Overview 00	Outlook 00
Context					

- MisMatch_{Reg} with distance $\Delta = 0$ in $\mathcal{O}(n)$.
- MisMatch_{Reg} (HD) in $\mathcal{O}(n\Delta)$.
- $x_1 w_1 x_2$ known as Landau and Vishkin Algo in $\mathcal{O}(n\Delta)$.
- We extend the idea of Landau and Vishkin to achieve $\mathcal{O}(n\Delta)$.

Introduction 000	Edit Distance 0000	Regular 000●0	Repeated Variables	Overview 00	Outlook 00
Algorith	m outline				

- Interpret regular variables as free insertions on that position.
- First dynamic programming in $\mathcal{O}(nm)$.
- For increasing distance calculate maximal matching expansion on a diagonal in the DP matrix (Landau Vishkin idea).
- Consider surrounding diagonals and furthest previously reached variable + LCP extensions.
- Compute Δ distance increment steps for *n* diagonals, hence $\mathcal{O}(n\Delta)$.

Rectangular lower bound

Hardness follows directly from rectangular lower bound of edit distance (Backurs, Indyk). $\alpha = xuy$, where u is a string of terminals and x and y are variables.

Theorem

 $MisMatch_{Reg}$ can not be solved in time $\mathcal{O}(|w|^h \Delta^g)$ (or $\mathcal{O}(|w|^h |\alpha|^g)$) where $h + g = 2 - \epsilon$ with $\epsilon > 0$, unless the Orthogonal Vectors Conjecture fails

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction	Edit Distance	Regular	Repeated Variables	Overview	Outlook
000	0000	00000	●000	00	00

Repeated Variables

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction	Edit Distance	Regular	Repeated Variables	Overview	Outlook
000	0000	00000	0●00	00	00

1Var Definition

Definition

$\alpha \in 1$ Var if there exists exactly one variable x_1 with several occurences.

Example: $\alpha = abx_1x_1abx_1x_1x_1baabx_1 \in 1$ Var.

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction	Edit Distance	Regular	Repeated Variables	Overview	Outlook
000	0000	00000	00●0	00	00

Algorithm outline

Theorem

MisMatch_{1Var} and MinMisMatch_{1Var} can be solved in $O(n^{3|\alpha|_{x_1}})$ time, where x_1 is the single variable occurring in α .

- Brute force possible intervals for all occurrences of x₁.
- Edit Distance Median-String problem for selected intervals (Sankoff 75).

Introduction 000	Edit Distance 0000	Regular 00000	Repeated Variables 000●	Overview 00	Outlook 00
Deduct	ian				

Theorem

Vennenon

 $MisMatch_{1Var}$ is W[1]-hard w.r.t. the number of occurrences of the single variable x of the input pattern α .

 $\begin{array}{lll} \mbox{Median String: MS} \\ \mbox{Input:} & k \mbox{ strings } w_1, \ldots, w_k \in \sigma^* \mbox{ an integer } \Delta. \\ \mbox{Question:} & \mbox{Does there exist a string } s \mbox{ such that} \\ & \sum_{i=1}^k d_{\rm ED}(w_i,s) \leq \Delta? \\ & (\mbox{The string } s \mbox{ for which } \sum_{i=1}^k d_{\rm ED}(w_i,s) \mbox{ is minimum is} \\ & \mbox{ called the median string of the strings } \{w_1, \ldots, w_k\}. \\ \end{array}$

PM instance: w encodes the k strings seperated by long borders of two fresh symbols. α encodes the same long borders with x_1 in between.

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction 000	Edit Distance 0000	Regular 00000	Repeated Variables 0000	Overview ●0	Outlook 00

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction	Edit Distance	Regular	Repeated Variables	Overview	Outlook
000	0000	00000		⊙●	00

Result Overview

Class	$Match(w, \alpha)$	MisMatch(w, α, Δ)	$MisMatch(w, \alpha, \Delta)$
		for $d_{\text{HAM}}(\cdot, \cdot)$	for $d_{\text{ED}}(\cdot, \cdot)$
Reg	O(n) [folklore]	$O(n\Delta)$, matching	$O(n\Delta)$, matching
		cond. lower bound	cond. lower bound
1Var	O(n) [folklore]	<i>O</i> (<i>n</i>)	$O(n^{3 \alpha _{\times}})$
$(\operatorname{var}(\alpha) = \{x\})$			W[1]-hard w.r.t. $ \alpha _x$
NonCross	$O(nm \log n)$ [1]	$O(n^3p)$	NP-hard
1RepVar	$O(n^2)$ [1]	$O(n^{k+2}m)$	NP-hard for $k \ge 1$
k = # x-blocks		W[1]-hard w.r.t. <i>k</i>	
kLOC	$O(mkn^{2k+1})$ [2]	$O(n^{2k+2}m)$	NP-hard for $k \ge 1$
	W[1]-hard w.r.t. <i>k</i>	W[1]-hard w.r.t. <i>k</i>	
kSCD	$O(m^2 n^{2k})$ [1]	NP-hard for $k \ge 2$	NP-hard for $k \ge 1$
	W[1]-hard w.r.t. k		
kRepVar	$O(n^{2k})$ [1]	NP-hard for $k \ge 1$	NP-hard for $k \ge 1$
	W[1]-hard w.r.t. <i>k</i>		

¹Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern matching with variables...

² Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka. Local patterns

³Daniel Reidenbach and Markus L. Schmid. Patterns with bounded treewidth.

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Introduction 000	Edit Distance 0000	Regular 00000	Repeated Variables 0000	Overview 00	Outlook ●0

Paweł Gawrychowski, Florin Manea, Stefan Siemer

Extensions & Outlook

- Matching lower and upper bounds for non-cross (HD).
- Enumeration algorithms
- Bounding the number of variables.
- Other metrics (Damerau-Levenshtein).
- Combining exact and approximate matching.
- Restrictions on Variables (e.g. RegEx membership).
- Analysing use cases (e.g. database theory, learning theory).

Extensions & Outlook

- Matching lower and upper bounds for non-cross (HD).
- Enumeration algorithms
- Bounding the number of variables.
- Other metrics (Damerau-Levenshtein).
- Combining exact and approximate matching.
- Restrictions on Variables (e.g. RegEx membership).
- Analysing use cases (e.g. database theory, learning theory).

Thank you.