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Lock-sharing systems (LSS)

Lock-sharing system
Proc: set of processes T : set of locks .

Lock-sharing system: Ap = (Sp,Σp, δp, initp) for each p ∈ Proc.

Transitions include operations on locks :
δp : Sp×Σp → OpT ×Sp with OpT = {acqt, relt | t ∈ T}∪{nop}.
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A problem

Model-checking problem
Input: A set of processes Proc, a set of locks T , an LSS
(Ap)p∈Proc, a property P (for instance P =“the run ends in a
deadlock”)

Output: Is there a run satisfying P?
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Useful restrictions

If we can pass unlimited information, PSPACE-complete

2LSS
Each process accesses at most two different locks.

Nested LSS
All processes acquire and release locks in a stack-like order,
i.e., a process can only release the lock it acquired the latest.
Those cases are generally NP-complete
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Key property

We summarize runs as short patterns .

Patterns tell us if some local runs can be interleaved into a
global run leading to a deadlock.
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Solving the dining philosophers
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Synthesis

Processes can forbid some transitions

hungry i

think i
left i

right i

acqcsi+1

acqcsi

acqcsi

acqcsi+1

relcsi , relcsi+1

If σpi always selects left i and σpj right j for some processes i ̸= j
then it avoids deadlocks.
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Strategies

System and Environment actions Σp = Σs
p ⊔ Σe

p.

Strategy
(σp)p∈Proc with σp : Σ

∗
p → 2Σp such that Σe

p ⊆ σp(u) for all u.

Locally live strategy
σ is locally live if all processes always have an available local
action.

Global deadlock
A σ-run u reaches a global deadlock if all processes are blocked at
the end.
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Undecidability

Theorem
The existence of a strategy avoiding global deadlocks is
undecidable, even with 3 processes and 4 locks in total.
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Proof scheme: PCP encoding

Let (u1, v1), . . . , (un, vn) be a PCP instance.

P1

P2

C

u
i1 ui2 ui3 · · ·

vj1
vj2

vj3
· · ·

C

Environment chooses

check
i1i2 · · · = j1j2 · · ·

check
ui1ui2 · · · = vj1vj2 · · ·
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Decidability

Theorem
The existence of a strategy avoiding global deadlocks is
ΣP
2 -complete for 2LSS

and NEXPTIME-complete for LSS respecting the nested lock
condition.
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Solving the dining philosophers
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→ Just pick an order on chopsticks and have all philosophers
take them accordingly!

Synthesizing strategies to avoid deadlocks



Solving the dining philosophers

p1

p3

p2

p4

1

32

4

p1

p3

p2

p4

→ Just pick an order on chopsticks and have all philosophers
take them accordingly!

Synthesizing strategies to avoid deadlocks



Solving the dining philosophers

p1

p3

p2

p4

1

32

4

p1

p3

p2

p4

→ Just pick an order on chopsticks and have all philosophers
take them accordingly!

Synthesizing strategies to avoid deadlocks



Results

General Undecidable

2LSS ΣP
2

Locally live strategies NP

Exclusive system PTime
Nested NExpTime
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An open problem

Can the following problem be solved in PTIME ?

Mortality problem
Input: A 2LSS (each process uses at most 2 locks).
Output: Is there a run such that one of the processes cannot
execute any action ever from some point on?

Synthesizing strategies to avoid deadlocks



Example

acq2 acq1

acq1 rel1 live

rel2 acq2
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Thank you for your attention!
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