
Synthesizing strategies to avoid deadlocks

Corto Mascle

Joint work with Hugo Gimbert, Anca Muscholl and Igor Walukiewicz

RP 2022



Dining philosophers

Synthesizing strategies to avoid deadlocks



Dining philosophers

Synthesizing strategies to avoid deadlocks



Dining philosophers

Synthesizing strategies to avoid deadlocks



Dining philosophers

Synthesizing strategies to avoid deadlocks



Dining philosophers

Synthesizing strategies to avoid deadlocks



Dining philosophers

Synthesizing strategies to avoid deadlocks



Dining philosophers

Synthesizing strategies to avoid deadlocks



Drinking philosophers

Synthesizing strategies to avoid deadlocks



Lock-sharing systems (LSS)

Lock-sharing system
Proc: set of processes T : set of locks .

Lock-sharing system: Ap = (Sp,Σp, δp, initp) for each p ∈ Proc.

Transitions include operations on locks :
δp : Sp×Σp → OpT ×Sp with OpT = {acqt, relt | t ∈ T}∪{nop}.

Synthesizing strategies to avoid deadlocks



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1 2

1 2

2

p2

Synthesizing strategies to avoid deadlocks



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1

2

1

2

2

p2

Synthesizing strategies to avoid deadlocks



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1

2

1 2

2

p2

Synthesizing strategies to avoid deadlocks



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1

2

1

2

2

p2

Synthesizing strategies to avoid deadlocks



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1 2

1 2

2

p2

Synthesizing strategies to avoid deadlocks



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1

2

1

2

2

p2

Synthesizing strategies to avoid deadlocks



Semantics

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

acq1

acq1, acq2

acq2

rel2

rel1

acq1

p1

1 2

1 2

2

p2

Synthesizing strategies to avoid deadlocks



A problem

Model-checking problem
Input: A set of processes Proc, a set of locks T , an LSS
(Ap)p∈Proc, a property P (for instance P =“the run ends in a
deadlock”)

Output: Is there a run satisfying P?

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0 1

t

0 1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0 1

t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0 1

t

0

1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0

1

t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0

1

t

0 1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0

1

t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0

1 t

0 1

t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0

1

t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0

1 t

0 1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0

1 t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0

1 t

0

1

t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0 1

t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0 1

t

0 1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0 1

t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0

1

t

0

1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0 1

t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0

1

t

0 1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0

1

t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0

1

t

0 1

t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0

1 t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0

1 t

0 1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0

1 t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0 1

t

0

1

t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0

1 t

Synthesizing strategies to avoid deadlocks



Passing information

acq0

acq1

relt acq1 rel0 acqt
rel1

relt acq0 rel1 acqt rel0

p

0 1

t

0 1 t

rel0

rel1

acqt rel1 acq0 relt
acq1

acqt rel0 acq1 relt acq0

C

0 1

t

Synthesizing strategies to avoid deadlocks



Useful restrictions

If we can pass unlimited information, PSPACE-complete

2LSS
Each process accesses at most two different locks.

Nested LSS
All processes acquire and release locks in a stack-like order,
i.e., a process can only release the lock it acquired the latest.
Those cases are generally NP-complete

Synthesizing strategies to avoid deadlocks



Useful restrictions

If we can pass unlimited information, PSPACE-complete

2LSS
Each process accesses at most two different locks.

Nested LSS
All processes acquire and release locks in a stack-like order,
i.e., a process can only release the lock it acquired the latest.
Those cases are generally NP-complete

Synthesizing strategies to avoid deadlocks



Useful restrictions

If we can pass unlimited information, PSPACE-complete

2LSS
Each process accesses at most two different locks.

Nested LSS
All processes acquire and release locks in a stack-like order,
i.e., a process can only release the lock it acquired the latest.

Those cases are generally NP-complete

Synthesizing strategies to avoid deadlocks



Useful restrictions

If we can pass unlimited information, PSPACE-complete

2LSS
Each process accesses at most two different locks.

Nested LSS
All processes acquire and release locks in a stack-like order,
i.e., a process can only release the lock it acquired the latest.
Those cases are generally NP-complete

Synthesizing strategies to avoid deadlocks



Key property

We summarize runs as short patterns .

Patterns tell us if some local runs can be interleaved into a
global run leading to a deadlock.

Synthesizing strategies to avoid deadlocks



Solving the dining philosophers

p1

p3

p2

p4

2

13

4

Synthesizing strategies to avoid deadlocks



Solving the dining philosophers

p1

p3

p2

p4

2

13

4

Synthesizing strategies to avoid deadlocks



Synthesis

Processes can forbid some transitions

hungry i

think i
left i

right i

acqcsi+1

acqcsi

acqcsi

acqcsi+1

relcsi , relcsi+1

If σpi always selects left i and σpj right j for some processes i ̸= j
then it avoids deadlocks.

Synthesizing strategies to avoid deadlocks



Strategies

System and Environment actions Σp = Σs
p ⊔ Σe

p.

Strategy
(σp)p∈Proc with σp : Σ

∗
p → 2Σp such that Σe

p ⊆ σp(u) for all u.

Locally live strategy
σ is locally live if all processes always have an available local
action.

Global deadlock
A σ-run u reaches a global deadlock if all processes are blocked at
the end.

Synthesizing strategies to avoid deadlocks



Strategies

System and Environment actions Σp = Σs
p ⊔ Σe

p.

Strategy
(σp)p∈Proc with σp : Σ

∗
p → 2Σp such that Σe

p ⊆ σp(u) for all u.

Locally live strategy
σ is locally live if all processes always have an available local
action.

Global deadlock
A σ-run u reaches a global deadlock if all processes are blocked at
the end.

Synthesizing strategies to avoid deadlocks



Strategies

System and Environment actions Σp = Σs
p ⊔ Σe

p.

Strategy
(σp)p∈Proc with σp : Σ

∗
p → 2Σp such that Σe

p ⊆ σp(u) for all u.

Locally live strategy
σ is locally live if all processes always have an available local
action.

Global deadlock
A σ-run u reaches a global deadlock if all processes are blocked at
the end.

Synthesizing strategies to avoid deadlocks



Undecidability

Theorem
The existence of a strategy avoiding global deadlocks is
undecidable, even with 3 processes and 4 locks in total.

Synthesizing strategies to avoid deadlocks



Proof scheme: PCP encoding

Let (u1, v1), . . . , (un, vn) be a PCP instance.

P1

P2

C

u
i1 ui2 ui3 · · ·

vj1
vj2

vj3
· · ·

C

Environment chooses

check
i1i2 · · · = j1j2 · · ·

check
ui1ui2 · · · = vj1vj2 · · ·

Synthesizing strategies to avoid deadlocks



Decidability

Theorem
The existence of a strategy avoiding global deadlocks is
ΣP
2 -complete for 2LSS

and NEXPTIME-complete for LSS respecting the nested lock
condition.

Synthesizing strategies to avoid deadlocks



Solving the dining philosophers

p1

p3

p2

p4

1

32

4

p1

p3

p2

p4

→ Just pick an order on chopsticks and have all philosophers
take them accordingly!

Synthesizing strategies to avoid deadlocks



Solving the dining philosophers

p1

p3

p2

p4

1

32

4

p1

p3

p2

p4

→ Just pick an order on chopsticks and have all philosophers
take them accordingly!

Synthesizing strategies to avoid deadlocks



Solving the dining philosophers

p1

p3

p2

p4

1

32

4

p1

p3

p2

p4

→ Just pick an order on chopsticks and have all philosophers
take them accordingly!

Synthesizing strategies to avoid deadlocks



Results

General Undecidable

2LSS ΣP
2

Locally live strategies NP

Exclusive system PTime
Nested NExpTime

Synthesizing strategies to avoid deadlocks



An open problem

Can the following problem be solved in PTIME ?

Mortality problem
Input: A 2LSS (each process uses at most 2 locks).
Output: Is there a run such that one of the processes cannot
execute any action ever from some point on?

Synthesizing strategies to avoid deadlocks



Example

acq2 acq1

acq1 rel1 live

rel2 acq2

acq1, acq2

p1

1 2

p2

Synthesizing strategies to avoid deadlocks



Thank you for your attention!

Synthesizing strategies to avoid deadlocks


