TECHNISCHE
UNIVERSITAT

WIEN

On the Skolem Problem
for Reversible Sequences

George Kenison
Institute of Logic and Computation

Partially Supported by:
WWTF Grant ProbInG (ICT19-018) and ERC Consolidator Grant ARTIST (101002685)



Attacking Queens

LHS: An arrangement of 8 non-attacking queens on an 8 x 8 board.
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Attacking Queens
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RHS: The same arrangement of 8 queens on an 8 x 8 toroidal board.

The queens are now attacking each other.
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Queens and Bicycles

Consider the following sets of natural numbers: the set of
n € N such that

1. nnon-attacking queens can be placed onan n x n
toroidal board. (The queen numbers’.)

2. there exists an irreducible polynomial in Z[X] of degree
n whose roots lie on precisely two concentric circles
centred at the origin. (The bicycle numbers.)

Describe the set of natural numbers n given by the union of
the queen and bicycle numbers.

'Pélya gave a solution in Uber die doppelt-periodischen Lésungen des
n-Damen-Problems (1918)

Reversible Skolem, George Kenison 3/18



Does this loop terminate?

Given: A€ 79%% and b, xy € 29
X < Xo
while bTx £ 0 do
X «— Ax
end while
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Does this loop terminate?

Given: A< 79%% and b, xy € 749
X < Xo
while b7 x + 0 do
X «— Ax
end while

Let A= (}1)andb,xo = (}) then

Update: (A"x0), = ((3), (1), (
Guard: <bTAnX0>n = <1 s 1 5 27 37 e >
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Decidability

Given: A € 79xd Given: unimodular A € z9xd

and b, xg € 74 and b, xg € 24

X < Xo X < Xp

while b"x # 0 do while b"x # 0 do

X — Ax X +— Ax

end while end while

Skolem Problem Reversible Skolem Problem
Termination decidable if d < 4. Termination is decidable if d < 7.
Decidability is open for d > 5. Decidability is open for d > 8.
Mignotte, Shorey, and Tijdeman, Lipton et al. (LICS '22)

1984; Vereshchagin, 1985

A € 799 is unimodular if det(A) = +1.
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Decidability

Given: A € 79xd Given: unimodular A € z9xd

and b, xg € 74 and b, xg € 24

X < Xo X < Xp

while b"x # 0 do while b"x # 0 do

X — Ax X +— Ax

end while end while

Skolem Problem Reversible Skolem Problem
Termination decidable if d < 4. Termination is decidable if d < 7.
Decidability is open for d > 5. Decidability is open for d > 8.
Mignotte, Shorey, and Tijdeman, Lipton et al. (LICS '22)

1984; Vereshchagin, 1985 New Proof by K. (MFCS '22)

A € 7%%% is unimodular if det(A) = +1.
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Does this loop terminate?

Given: A< 79%% and b, xy € 749
X < Xo
while bTx £ 0 do
X «— Ax
end while

Equivalently,

For <Un>n = <bTX0, bTAXo, bTA2X0, .

does (up), vanish at some n?
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Does this loop terminate?

Given: A< 79%% and b, xy € 749
X < Xo
while bTx £ 0 do
X «— Ax
end while

Equivalently,

For <Un>n = <bTX0, bTAXo, bTAzXo, .. .>,
does (up), vanish at some n?

What class of sequences describes (upn),,?
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Integer Linear Recurrence Sequences (LRS)

(Un)p = (b" X, bT Axg, bT A?xg, .. .) is an LRSZ.

For each n € Ny,
Un+d = @d—1Unyd—1 + -+ -+ a@Uny1+3aoln

with ag,...,84_1 € Z and gy # 0.
Initial values ug, Uy, ..., Ug_1 € Z.

2py the Cayley—Hamilton Theorem
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Integer Linear Recurrence Sequences (LRS)

(Un)p = (b" X, bT Axg, bT A?xg, .. .) is an LRSZ.

For each n € Ny,
Uptg = @g—1Uptg—1 + -+ @1lpy1+aoln

with ag,...,84_1 € Z and gy # 0.
Initial values ug, Uy, ..., Ug_1 € Z.

When do LRSs vanish?

2py the Cayley—Hamilton Theorem
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5
Vanishing Set

¢ The vanishing set of (0,1,1,2,...) is finite.
¢ The vanishing set of (0,1,0,1,...) is infinite.

Reversible Skolem, George Kenison 8/18



Vanishing Set

Examples
¢ The vanishing set of (0,1,1,2,...) is finite.
¢ The vanishing set of (0,1,0,1,...) is infinite.

Skolem—Mahler—Lech Theorem

For an LRS (up),, the set {n € Ny : u, = 0} is given by the
union of a finite (possibly empty) set and a finite (possibly
zero) number of arithmetic progressions.
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Vanishing Set

Examples
¢ The vanishing set of (0,1,1,2,...) is finite.
¢ The vanishing set of (0,1,0,1,...) is infinite.

Skolem—Mahler—Lech Theorem

For an LRS (up),, the set {n € Ny : u, = 0} is given by the
union of a finite (possibly empty) set and a finite (possibly
zero) number of arithmetic progressions.

Whenis {n € Ny : u, = 0} non-empty? (Skolem Problem)
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State of the art (Skolem Problem)

When is {n € Ny : up = 0} non-empty?
Let f be the char poly of the LRS (up) .

Decidability of Skolem is not known when both:

(H1) f has at least four dominant roots, and
(H2) roots of f lead to non-deg (up) -

M
°
A2 ®
Decidability is not known for LRS ; £
Un = CIAT+CI A "+ Ag+Co N2 +p". o
Ao @
e __
M
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Reversible LRS

An LRS with
Unid = @g—1Unyg—1+ -+ ailpy1 £ Up

is reversible.
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Reversible LRS

An LRS with
Unyd = @d—1Unid—1 + -+ @lnp1 £ Up
is reversible.

TFAE:

1. (un)2 is reversible.

2. Update matrix A is unimodular so that det(A) = +1.3
3. char poly f(x) := det(x/ — A) € Z[x] has f(0) = £1.
4. The extension (up)5e_ . is Z-valued.

%A induces a linear toral automorphism Ta: RY/Z% — R?/Z°.
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Reversible LRS

An LRS with
Unid = @g—1Unyg—1+ -+ ailpy1 £ Up

is reversible.

Examples and a Non-Example

(...,2,-1,1,0,1,1,2,3,...) Upyo = Upt1 + Up
(...,0,1,0,1,0,1,0,1,0,...) Uni2 = Up
(...,1/8,1/4,1/21,2,4,8,...) Upi1 = 2Up
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Reversible Skolem

Theorem (Lipton et al., )
Reversible Skolem is decidable up to order 7.

(H1) f has at least four dominant roots.
(H2) roots of f lead to non-deg (up),.
Note: Instances where either hypothesis fails are decidable.
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Alternative Proof (at order 5)

Assume there exists f € Z[x] a monic quintic with f(0) = £1 st both
of the hypotheses (H1) and (H2) hold.

WTS: there is no monic quintic f € Z[x] with f(0) = +1 st both of the
hypotheses (H1) and (H2) hold.

(H1) f has at least four dominant roots.
(H2) roots of f lead to non-deg (un),.
Note: Instances where either hypothesis fails are decidable.
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Alternative Proof (at order 5)

Assume there exists f € Z[x] a monic quintic with f(0) = £1 st both
of the hypotheses (H1) and (H2) hold.

Then f is irreducible and its roots lie on two concentric circles
centred at the origin.

WTS: there is no monic quintic f € Z[x] with f(0) = +1 st both of the
hypotheses (H1) and (H2) hold.

(H1) f has at least four dominant roots.
(H2) roots of f lead to non-deg (un),.
Note: Instances where either hypothesis fails are decidable.

(KrongekersitBSohandies the kaseowhere the roots all lie on one circle.12/18



ON THE REMAK HEIGHT, THE MAHLER MEASURE AND
CONJUGATE SETS OF ALGEBRAIC NUMBERS LYING ON TWO
CIRCLES
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We define a new height function $\mathcal{R}(\alpha)$, the Remak height of an algebraic
number $\alphas$. We give sharp upper and lower bounds for $\mathcal{R}(\alpha)$ in terms of
the classical Mahler measure $M(\alpha)$. Study of when one of these bounds is exact leads us

The Mahler measure and Remak height give root separation bounds for
irreducible polynomials. Equality between these functions occurs when
the roots of an irreducible polynomial lie on two circles. ..



M Theorem 2.1. Suppose that a unit-norm « of degree d lies, with
all its conjugates on two circles |z| = r and |z| = R, but not just
on one, with (without loss of generality) at most half of the
conjugates on |z| = r. Then one of the following holds.

(a) dis amultiple of 3, R = r~'/2 with o having d/3 conjugates
on |z| = r and 2d/3 conjugates on |z| = r~1/2. Assuming
(without loss of generality) that |a| = r, we have that for
some positive integer n, r" (= o say) is a real, but non-totally
real, cubic unit-norm, and o = po, where p is unit-circular.

(b) diseven, R=r—"where R > 1 without loss of generality,
and d/2 conjugates of « lie on each circle. Furthermore, for
some positive integer n, R" (= 7 say) is either an extended
Salem number or is reciprocal quadratic, and o = pi),
where 1) is a Salem half-norm defined by 7, and p is unit
circular.
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coup de grace

... A weaker version of Theorem 2.1:
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coup de grace S

Theorem (Dubickas and Smyth, _@".

Let f € Z[x] be irreducible, monic, and f(0) = +1. Supposé
that the roots of f lie on two concentric circles centred at
the origin. Then deg(f) is either even, or a multiple of three.

The bicycle numbers are precisely those natural numbers n
where gcd(n, 6) > 1.
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coup de grace g 4

Theorem (Dubickas and Smyth, , o

Let f € Z[x] be irreducible, monic, and f(0) = +1. Suppose
that the roots of f lie on two concentric circles centred at
the origin. Then deg(f) is either even, or a multiple of three.

Proof (contradiction continued)
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coup de grace e L

Theorem (Dubickas and Smyth, e

Let f € Z[x] be irreducible, monic, and f(0) = +1. Suppose
that the roots of f lie on two concentric circles centred at
the origin. Then deg(f) is either even, or a multiple of three.

Proof (contradiction continued)
f is a quintic that satisfies the above assumptions.
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coup de grace S

Theorem (Dubickas and Smyth, , o

Let f € Z[x] be irreducible, monic, and f(0) = +1. Suppose
that the roots of f lie on two concentric circles centred at
the origin. Then deg(f) is either even, or a multiple of three.

Proof (contradiction continued)

f is a quintic that satisfies the above assumptions.
Thus five is either even, or a multiple of three. % O
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coup de grace e

Theorem (Dubickas and Smyth, , o

Let f € Z[x] be irreducible, monic, and f(0) = +1. Suppose
that the roots of f lie on two concentric circles centred at
the origin. Then deg(f) is either even, or a multiple of three.

Proof (contradiction continued)

f is a quintic that satisfies the above assumptions.
Thus five is either even, or a multiple of three. % O

So Reversible Skolem is decidable at order 5. (Similar
arguments at order 6, 7.)
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Reversible Skolem at order 8

Decidability of Reversible Skolem is not known at order 8.3

P 1 +lm
P | The roots of x® + x7 + x8 +
‘ | Re | 5 4 3. 42
i 2X° +6X*4+2x° + X+ x+1

< | . satisfy (H1)and (H2).

3there is an infinite family of LRSs that the state of the art cannot handle.
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New Resulis

The Positivity Problem
For LRS (up),, determine whether u, > 0 for each n € Ny.

An LRS is simple if the associated char poly has no repeated roots.

Corollary

Simple Reversible Positivity is decidable up to order 10.

(Ouaknine and Worrell, 2014): simple positivity is decidable up to order 9.
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Directions for Future Research

¢ Apply techniques more widely e.g., Reversible Positivity.

e Extend the state of the art for specialisations such as
Palindromic Skolem.

Thank you for listening!
Theorem (Pdlya)

n non-attacking queens can be placed on an n x n toroidal
board if and only if gcd(n, 6) = 1
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