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Attacking Queens

LHS: An arrangement of 8 non-attacking queens on an 8 × 8 board.
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Attacking Queens

RHS: The same arrangement of 8 queens on an 8 × 8 toroidal board.
The queens are now attacking each other.
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Queens and Bicycles

Consider the following sets of natural numbers: the set of
n ∈ N such that

1. n non-attacking queens can be placed on an n × n
toroidal board. (The queen numbers1.)

2. there exists an irreducible polynomial in Z[X ] of degree
n whose roots lie on precisely two concentric circles
centred at the origin. (The bicycle numbers.)

Describe the set of natural numbers n given by the union of
the queen and bicycle numbers.

1Pólya gave a solution in Uber die doppelt-periodischen Lösungen des
n-Damen-Problems (1918)
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Does this loop terminate?

Given: A ∈ Zd×d and b, x0 ∈ Zd

x ← x0
while b⊤x ̸= 0 do

x ← Ax
end while
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Does this loop terminate?

Given: A ∈ Zd×d and b, x0 ∈ Zd

x ← x0
while b⊤x ̸= 0 do

x ← Ax
end while

Example
Let A =

(
1 1
0 1

)
and b, x0 =

(
1
0

)
then

Update: ⟨Anx0⟩n = ⟨
(

1
0

)
,
(

1
1

)
,
(

2
1

)
,
(

3
2

)
, . . .⟩

Guard: ⟨b⊤Anx0⟩n = ⟨1,1,2,3, . . .⟩
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Decidability

Given: A ∈ Zd×d

and b, x0 ∈ Zd

x ← x0
while b⊤x ̸= 0 do

x ← Ax
end while

Given: unimodular A ∈ Zd×d

and b, x0 ∈ Zd

x ← x0
while b⊤x ̸= 0 do

x ← Ax
end while

Skolem Problem

Termination decidable if d ≤ 4.
Decidability is open for d ≥ 5.

Mignotte, Shorey, and Tijdeman,

1984; Vereshchagin, 1985

Reversible Skolem Problem

Termination is decidable if d ≤ 7.
Decidability is open for d ≥ 8.

Lipton et al. (LICS ’22)

New Proof by K. (MFCS ’22)

A ∈ Zd×d is unimodular if det(A) = ±1.
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Does this loop terminate?

Given: A ∈ Zd×d and b, x0 ∈ Zd

x ← x0
while b⊤x ̸= 0 do

x ← Ax
end while

Equivalently,

For ⟨un⟩n = ⟨b⊤x0,b⊤Ax0,b⊤A2x0, . . .⟩,
does ⟨un⟩n vanish at some n?
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Does this loop terminate?

Given: A ∈ Zd×d and b, x0 ∈ Zd

x ← x0
while b⊤x ̸= 0 do

x ← Ax
end while

Equivalently,

For ⟨un⟩n = ⟨b⊤x0,b⊤Ax0,b⊤A2x0, . . .⟩,
does ⟨un⟩n vanish at some n?

What class of sequences describes ⟨un⟩n?
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Integer Linear Recurrence Sequences (LRS)

⟨un⟩n = ⟨b⊤x0,b⊤Ax0,b⊤A2x0, . . .⟩ is an LRS2.

For each n ∈ N0,

un+d = ad−1un+d−1 + · · ·+ a1un+1+a0un

with a0, . . . ,ad−1 ∈ Z and a0 ̸= 0.
Initial values u0,u1, . . . ,ud−1 ∈ Z.

When do LRSs vanish?

2by the Cayley–Hamilton Theorem
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Vanishing Set

Examples
• The vanishing set of ⟨0,1,1,2, . . .⟩ is finite.
• The vanishing set of ⟨0,1,0,1, . . .⟩ is infinite.
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Examples
• The vanishing set of ⟨0,1,1,2, . . .⟩ is finite.
• The vanishing set of ⟨0,1,0,1, . . .⟩ is infinite.

Skolem–Mahler–Lech Theorem
For an LRS ⟨un⟩n, the set {n ∈ N0 : un = 0} is given by the
union of a finite (possibly empty) set and a finite (possibly
zero) number of arithmetic progressions.
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Vanishing Set

Examples
• The vanishing set of ⟨0,1,1,2, . . .⟩ is finite.
• The vanishing set of ⟨0,1,0,1, . . .⟩ is infinite.

Skolem–Mahler–Lech Theorem
For an LRS ⟨un⟩n, the set {n ∈ N0 : un = 0} is given by the
union of a finite (possibly empty) set and a finite (possibly
zero) number of arithmetic progressions.

When is {n ∈ N0 : un = 0} non-empty? (Skolem Problem)
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State of the art (Skolem Problem)

When is {n ∈ N0 : un = 0} non-empty?
Let f be the char poly of the LRS ⟨un⟩n.
Decidability of Skolem is not known when both:
(H1) f has at least four dominant roots, and
(H2) roots of f lead to non-deg ⟨un⟩n.

Decidability is not known for LRS
un = c1λ

n
1+c1λ1

n+c2λ
n
2+c2λ2

n+ρn.

ρ

λ1

λ1

λ2

λ2
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Reversible LRS

An LRS with

un+d = ad−1un+d−1 + · · ·+ a1un+1 ± un

is reversible.
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Reversible LRS

An LRS with

un+d = ad−1un+d−1 + · · ·+ a1un+1 ± un

is reversible.

TFAE:

1. ⟨un⟩∞n=0 is reversible.
2. Update matrix A is unimodular so that det(A) = ±1.3

3. char poly f (x) := det(xI − A) ∈ Z[x ] has f (0) = ±1.
4. The extension ⟨un⟩∞n=−∞ is Z-valued.

3A induces a linear toral automorphism TA : Rd/Zd → Rd/Zd .
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Reversible LRS

An LRS with

un+d = ad−1un+d−1 + · · ·+ a1un+1 ± un

is reversible.

Examples and a Non-Example

⟨. . . ,2,−1,1,0,1,1,2,3, . . .⟩
⟨. . . ,0,1,0,1,0,1,0,1,0, . . .⟩
⟨. . . , 1/8, 1/4, 1/2,1,2,4,8, . . .⟩

un+2 = un+1 + un

un+2 = un

un+1 = 2un
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Reversible Skolem

Theorem (Lipton et al., 2022)
Reversible Skolem is decidable up to order 7.

(H1) f has at least four dominant roots.
(H2) roots of f lead to non-deg ⟨un⟩n.
Note: Instances where either hypothesis fails are decidable.
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Alternative Proof (at order 5)

Proof.
Assume there exists f ∈ Z[x ] a monic quintic with f (0) = ±1 st both
of the hypotheses (H1) and (H2) hold.

Then f is irreducible and its roots lie on two concentric circles
centred at the origin.

WTS: there is no monic quintic f ∈ Z[x ] with f (0) = ±1 st both of the
hypotheses (H1) and (H2) hold.

ρ

λ1

λ1

λ2

λ2

(H1) f has at least four dominant roots.
(H2) roots of f lead to non-deg ⟨un⟩n.
Note: Instances where either hypothesis fails are decidable.

(Kronecker, 1857) handles the case where the roots all lie on one circle.
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The Mahler measure and Remak height give root separation bounds for
irreducible polynomials. Equality between these functions occurs when
the roots of an irreducible polynomial lie on two circles. . .



Theorem 2.1. Suppose that a unit-norm α of degree d lies, with
all its conjugates on two circles |z| = r and |z| = R, but not just
on one, with (without loss of generality) at most half of the
conjugates on |z| = r . Then one of the following holds.

(a) d is a multiple of 3, R = r−1/2 with α having d/3 conjugates
on |z| = r and 2d/3 conjugates on |z| = r−1/2. Assuming
(without loss of generality) that |α| = r , we have that for
some positive integer n, rn (= σ say) is a real, but non-totally
real, cubic unit-norm, and αn = ρσ, where ρ is unit-circular.

(b) d is even, R = r−1 where R > 1 without loss of generality,
and d/2 conjugates of α lie on each circle. Furthermore, for
some positive integer n, Rn (= τ say) is either an extended
Salem number or is reciprocal quadratic, and αn = ρψ,
where ψ is a Salem half-norm defined by τ , and ρ is unit
circular.

. . .

Reversible Skolem, George Kenison 14 / 18



coup de grâce

. . . A weaker version of Theorem 2.1:

Theorem (Dubickas and Smyth, 2001)
Let f ∈ Z[x ] be irreducible, monic, and f (0) = ±1. Suppose
that the roots of f lie on two concentric circles centred at
the origin. Then deg(f ) is either even, or a multiple of three.

Proof (contradiction continued)

f is a quintic that satisfies the above assumptions.
Thus five is either even, or a multiple of three. � □

So Reversible Skolem is decidable at order 5. (Similar
arguments at order 6, 7.)

ρ

λ1

λ1

λ2

λ2

Reversible Skolem, George Kenison 15 / 18



coup de grâce
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The bicycle numbers are precisely those natural numbers n
where gcd(n,6) > 1.
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Theorem (Dubickas and Smyth, 2001)
Let f ∈ Z[x ] be irreducible, monic, and f (0) = ±1. Suppose
that the roots of f lie on two concentric circles centred at
the origin. Then deg(f ) is either even, or a multiple of three.

Proof (contradiction continued)
f is a quintic that satisfies the above assumptions.
Thus five is either even, or a multiple of three. � □

So Reversible Skolem is decidable at order 5. (Similar
arguments at order 6, 7.)

ρ

λ1

λ1

λ2

λ2

Reversible Skolem, George Kenison 15 / 18



coup de grâce
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Reversible Skolem at order 8

Decidability of Reversible Skolem is not known at order 8.3

−1

1

Re

Im

The roots of x8 + x7 + x6 +
2x5 +6x4 +2x3 +x2 +x +1
satisfy (H1) and (H2).

3there is an infinite family of LRSs that the state of the art cannot handle.
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New Results

The Positivity Problem
For LRS ⟨un⟩n, determine whether un ≥ 0 for each n ∈ N0.

An LRS is simple if the associated char poly has no repeated roots.

Corollary

Simple Reversible Positivity is decidable up to order 10.

(Ouaknine and Worrell, 2014): simple positivity is decidable up to order 9.

Reversible Skolem, George Kenison 17 / 18



Directions for Future Research

• Apply techniques more widely e.g., Reversible Positivity.
• Extend the state of the art for specialisations such as

Palindromic Skolem.

Thank you for listening!

Theorem (Pólya)
n non-attacking queens can be placed on an n × n toroidal
board if and only if gcd(n,6) = 1
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