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Halting Problem for Single-Path Linear Loops

What is the simplest class of programs for which decidability of the
Halting Problem is open?

x := a;
while b · x 6= 0 do

x := M · x;

Halting Problem

Instance: 〈 a ; b ; M 〉
Question: Does this program halt?
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Classical Formulation

A linear recurrence sequence (LRS) is a sequence
〈u0, u1, u2, . . .〉 in Q such that there are constants a1, . . . , ak and,
∀n ≥ 0 : un+k = a1un+k−1 + a2un+k−2 + . . .+ akun.

e.g. the Fibonacci numbers 〈0, 1, 1, 2, 3, 5, 8, . . .〉
k is the order of the sequence

Fibonacci has order 2 (un+2 = un+1 + un)

Exponential-polynomial closed form: un =
∑

i∈I Ci (n)λni :

Problem SKOLEM

Instance: An LRS 〈u0, u1, u2, . . .〉
Question: Does ∃n ≥ 0 such that un = 0?
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Decidability is Open!

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting

Problem even for ‘linear’ automata!”

Terence Tao

“. . . a mathematical embarrassment . . . ”

Richard Lipton
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The Skolem-Mahler-Lech Theorem

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

Let 〈un〉 be a non-degenerate linear recurrence sequence that is
not identically zero. Then the set {n : un = 0} is finite.

Skolem’s proof used p-adic analysis and is ineffective.

From the early 2000s: series of papers that use the Subspace
Theorem in Diophantine approximation to give explicit upper
bounds on the number of zeros of a non-degenerate LRS.
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The Skolem Problem at Low Orders

Theorem (folklore)

For orders 1 and 2, Skolem is decidable.

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For orders 3 and 4, Skolem is decidable.

Critical ingredient is Baker’s theorem for
linear forms in logarithms, which earned
Baker the Fields Medal in 1970.

Corollary

The Halting Problem is decidable for loops with at most 4 variables
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Universal Skolem Set

Definition

Define S ⊆ N to be a Universal Skolem Set if there is an effective
procedure that inputs an integer linear recurrence sequence 〈un〉
and outputs whether or not there exists n ∈ S with un = 0.

Example

Define f : N+ → N by f (n) = b
√

log nc. Write s0 := 1 and,
inductively set sn := n! + sf (n) for n > 0. Then S := {sn : n ∈ N}
is a Universal Skolem Set.

S has density zero:

|S ∩ {1, . . . , n}| ∼ log n

log log n
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A Universal Skolem Set of Positive Lower Density

A representation of a positive integer n is a triple (P, q, a)
such that n = Pq + a, P is prime, and q, a are o(log n).

Define U to be the set of positive integers n with “many” (at
least log4 n) representations.

Theorem

The set U is a Universal Skolem Set of positive lower density.
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Simple Linear Recurrence Sequences

An LRS is simple if its characteristic roots are simple

Closed-form is a power sum un =
∑

i∈I Ciλ
n
i :

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

Simple LRS correspond precisely to diagonalisable matrices
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Exponential Diophantine Equations in Multiple Variables

There are explicit upper bounds on number of solutions n of∑
i∈I Ciλ

n
i = 0.

Theorem (Schlickewei and Schmidt 2000)

Let αi , βi ,Ci be non-zero algebraic numbers for i = 1, . . . , `,
Excepting some degenerate cases, the equation

∑̀
i=1

Ciα
n
i β

m
i = 0 (1)

has finitely many solutions in integers n,m. Moreover there is an
explicit upper bound on the number of solutions in terms of ` and
the degree of the αi , βi ,Ci .
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U is a Universal Skolem Set

Consider non-degenerate simple LRS un :=
∑

i∈I Ciλ
n
i :

Proposition

If un = 0 and n has decomposition n = qP + a then q, a solve a
“companion equation”.

Previous result of Schlickewei–Schmidt induces upper bound
on number of representations of n.

Proposition

Let 〈un〉 be a non-degenerate simple LRS. Then there is a
computable upper bound on the set {n ∈ U : un = 0}.
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On the Density of U

Theorem

The set U has positive lower density.

Proof. Count pairs of representations Pq + a = P ′q′ + a′ that
coincide.

Theorem (Sieve)

Let a1, a2, b1, b2 ∈ Z be such that |a1a2(a1b2 − a2b1)| 6= 0. Then

|{t ≤ X : a1t + b1, a2t + b2 both prime}| � X

(logX )2
.
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What is the Density of U?

“In investigations concerning the asymptotic
properties of arithmetic functions, it is often
possible to make an interesting use of heuristic
arguments.”

Harald Cramér

Cramér conjecture:

max
pn≤x

(pn+1 − pn) = O(log2 x)

“The exact formulation of Cramér’s conjecture has been called into
question. It is still probably true that for all c > 2,

max
pn≤x

(pn+1 − pn) = O(logc x) ”

Adelman and McCurley
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Heuristics for the Skolem Problem

Theorem

There is a set U of positive lower density for which there is an
algorithm that takes as input a non-degenerate LRS and outputs
its set of zeros in U .

Cramér heuristic suggests that U has density one.
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