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Stochastic shortest path problem

What is the maximal possible reward in expectation?
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Markov decision process
(MDP)

Scheduler:
resolves non-deterministic
choices

Classical problem:
Compute Emax

M (acc. reward) def= supS ES
M(acc. reward)

where S ranges over schedulers reaching goal almost surely.
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Tradeoff between expectation and variance
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Variance-penalized expectation (VPE): µ− λ · σ2
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Motivation to study VPE

Established objective in MDPs
(finite horizon1, discounted expected rewards2)

Markowitz portfolio optimization

Weighted factor method a common approach in multi-objective
optimization to obtain a subset of the Pareto-optimal points.3

As a stepping stone towards further problems.

1See, e.g., Collins (1997)
2See, e.g., Filar, Kallenberg, Lee (1989)

3See, e.g., White (1982), Chatterjee, Majumdar, Henzinger (2006).
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Our results

Theorem
In an MDP with arbitrary (integer) weights, a memoryless, deterministic, and
variance-minimal scheduler among all expectation-optimal schedulers can be
computed in polynomial time.
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If expected weight is known (and independent of the history) from each state,
minimal variance can be computed via a linear program.
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Illustration of the difficulties of maximizing VPE

cs goal

α : +1

β : +0

1/2

1/2

+1

X : accumulated weight

Maximize ES(X)− λVS(X) = ES(X)− λ
(
ES(X 2)− (ES(X))2).

Let B and A be two schedulers that behave identically except:
B chooses β if weight k has been accumulated; A chooses α instead.
(This happens with prob p = 1

2k−1 .)

EA(X)− EB(X) = p.

(EA(X))2 − (EB(X))2 = 2pEB(X) + p2.

EA(X 2)− EB(X 2) = p((k + 1)2 − k2) = p(2k + 1).

VPE(A)− VPE(B) = p
(

1 + λ(2EB(X) + p) −λ(2k + 1)
)

.
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Saturation point

Lemma
Given an MDP M with non-negative weights and a rational penalty factor λ,
we can compute a bound K in polynomial time such that any VPE-optimal
scheduler has to minimize the expected accumulated weight as soon as a
weight of at least K has been accumulated.

Above the saturation point K :

Fix a memoryless deterministic scheduler minimizing the variance among all
expectation-minimal scheduler.

Computable in polynomial time.
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Our results

Theorem
In an MDP with non-negative weights, the maximal VPE (for a given penalty
factor λ) can be computed in exponential space.
Optimal schedulers can be chosen to be deterministic finite-memory schedulers
and can be computed in exponential space as well.
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Theorem
The threshold problem whether the maximal VPE is greater or equal to a
rational ϑ is in NEXPTIME and EXPTIME-hard.
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Outlook

Decidability of the existence of a scheduler with expectation ≥ η and
variance ≤ ν?

VPE in MDPs with arbitrary weights (Positivity-hard?)

Investigation of further risk and deviation measures
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