SAT-Based Invariant Inference and Its Relation to Concept Learning

Sharon Shoham

Yotam Feldman

Neil Immerman

Mooly Sagiv

James R. Wilcox

W

UNIVERSITY of
WASHINGTON

SAT-Based Invariant Inference

- predicate abstraction [CAV'97, POPL'02]
- symbolic abstraction [VMCAl'04,'16]
- interpolation [CAV'03, TACAS'06]
- IC3/PDR [VMCAI'11, FMCAD'11]
- abduction [OOPSLA'13]
- SyGuS [FMCAD'13,...]
- ICE learning [CAV'14, POPL'15]
- ...

Why do they succeed?
Why do they fail?
(How can we make them better?)

Goal

Understand SAT-based invariant inference from the perspective of exact learning with queries

[POPL'20] Complexity and information in invariant inference. Feldman, Immerman, Sagiv, Shoham

[POPL'21] Learning the boundary of inductive invariants. Feldman, Sagiv, Shoham, Wilcox

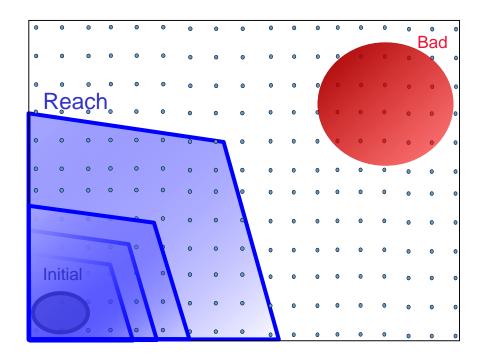
[POPL'22] Property-directed reachability as abstract interpretation in the monotone theory. Feldman, Sagiv, Shoham, Wilcox

[SAS'22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham

Safety of Transition Systems

(Un)reachability problem: no bad state is reachable from the initial states

$$\begin{array}{ll} \underline{\text{lnit}} \colon & \underline{\delta} \colon \\ (x_1, \dots, x_n) & \coloneqq 0 \dots 0 \\ & \underline{\text{Bad}} \colon \\ (x_1, \dots, x_n) & = 1 \dots 1 \end{array} \qquad \begin{array}{ll} \underline{\delta} \colon \\ y_1, \dots, y_n & \coloneqq * \\ x_1, \dots, x_n & \coloneqq (x_1, \dots, x_n) + \\ \underline{2} \cdot (y_1, \dots, y_n) & (\text{mod } 2^n) \end{array}$$

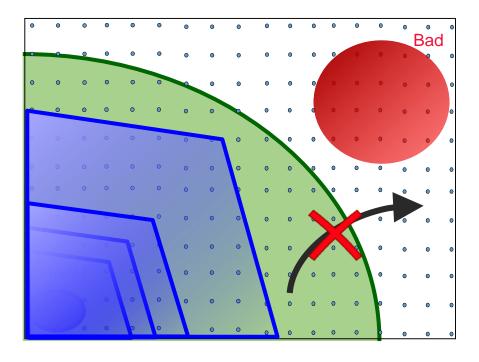


Inductive Invariants

(Un)reachability problem: no bad state is reachable from the initial states

$$\begin{array}{rcl}
& \underline{\text{Init}:} \\
(x_1, \dots, x_n) & \coloneqq 0 \dots 0 \\
& \underline{\text{Bad}:} \\
(x_1, \dots, x_n) & = 1 \dots 1
\end{array}$$

$$\frac{\delta}{y_1, \dots, y_n} := *
x_1, \dots, x_n := (x_1, \dots, x_n) +
2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$



Initiation: Init $\subseteq I$

Safety: $I \cap Bad = \emptyset$

Consecution: $\{I\} \delta \{I\}$

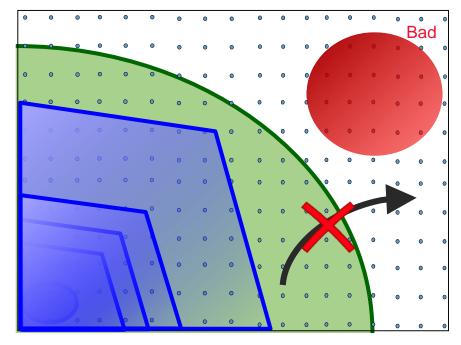
Inductive Invariants

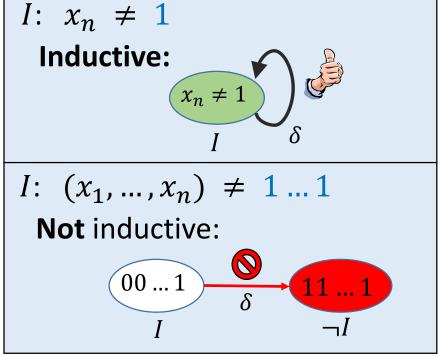
(Un)reachability problem: no bad state is reachable from the initial states

$$\frac{\text{lnit}:}{(x_1, \dots, x_n)} := 0 \dots 0$$

$$\frac{\text{Bad}:}{(x_1, \dots, x_n)} = 1 \dots 1$$

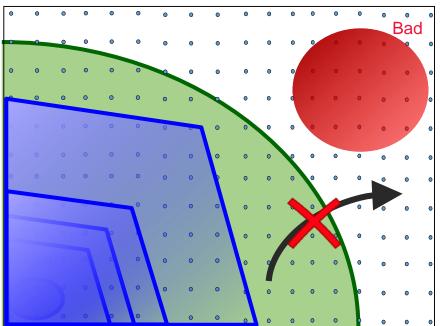
$$\frac{\underline{\delta}}{y_1, \dots, y_n} := *
x_1, \dots, x_n := (x_1, \dots, x_n) +
\underline{2} \cdot (y_1, \dots, y_n) \pmod{2^n}$$

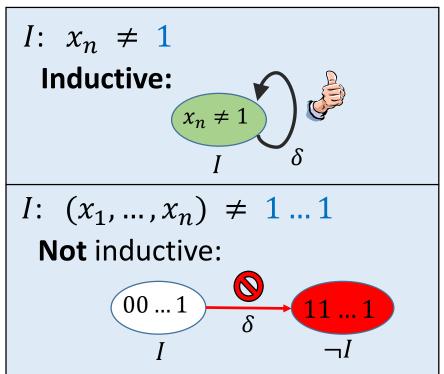




Invariant Inference

Goal: Find inductive invariants automatically



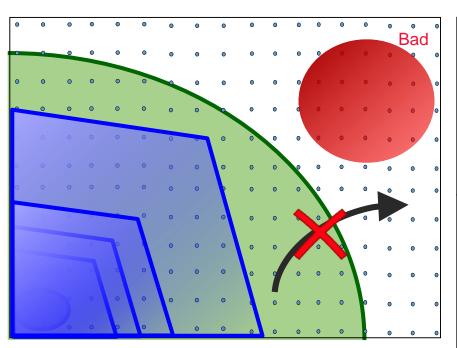


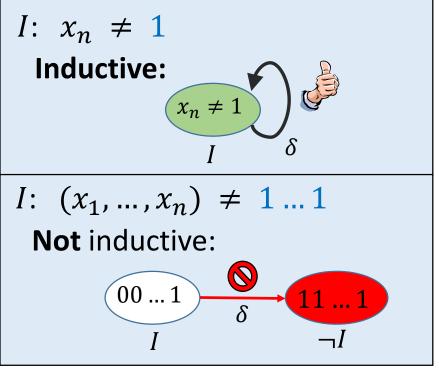
 $2 \cdot (y_1, \dots, y_n) \pmod{2^n}$

SAT-based Invariant Inference

Goal: Find inductive invariants automatically

Means: Employ a SAT solver

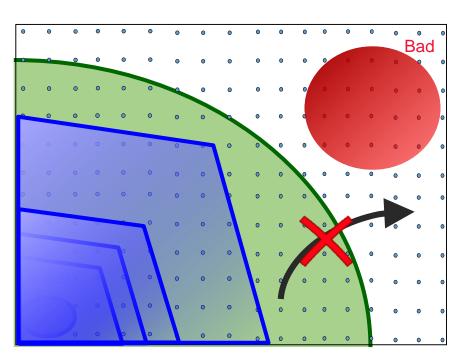




SAT-based Invariant Inference

Goal: Find inductive invariants automatically

Means: Employ a SAT solver



Init, Bad: formulas over V

 δ : formula over V, V'

SAT query Examples:

Initiation: Init $\land \neg I$ unsat?

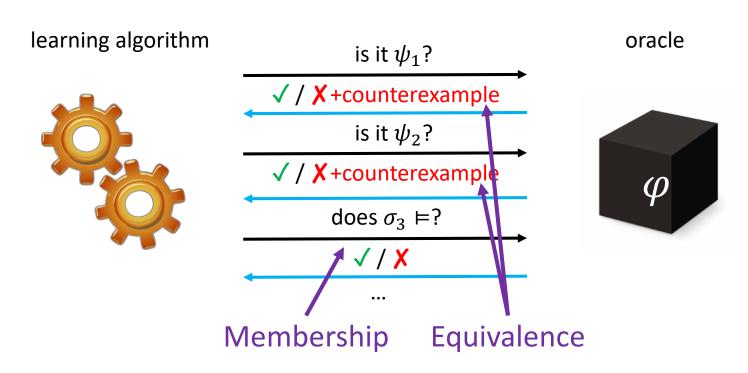
Safety: $I \wedge Bad$ unsat?

Cons.: $I \wedge \delta \wedge \neg I'$ unsat?

* $I' = I[V \mapsto V']$

Exact Concept Learning with Equivalence & Membership Queries

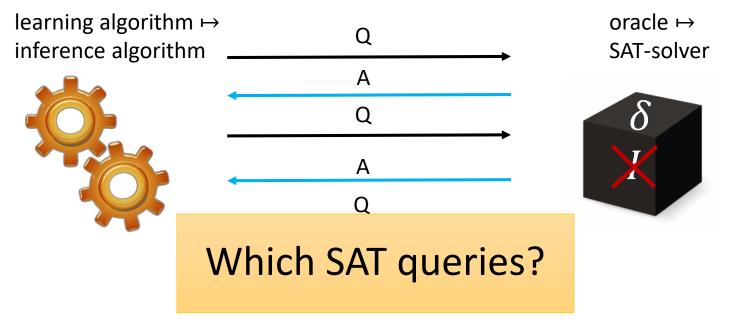
Goal: learn an unknown concept φ



[ML'87] Queries and Concept Learning. Angluin

SAT-Based Invariant Inference as Inference with Queries

Goal: infer an unknown inductive invariant I

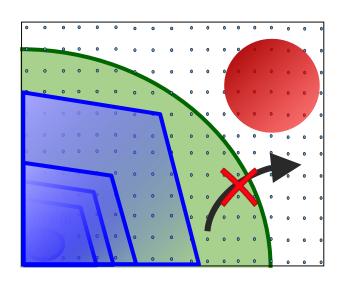


Algorithms cannot access the transition relation directly, only through SAT queries

This Talk

Invariant Inference

Exact Concept Learning



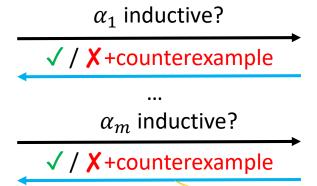
VS.



- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Inductiveness-Query Model

inference algorithm



inductiveness-query oracle

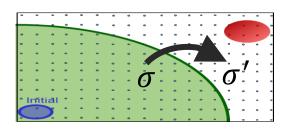
 $\alpha_i \wedge \delta \wedge \neg \alpha_i'$ unsat?

ICE framework - Learn from examples:

Positive: $\sigma \vDash I$ (e.g., initial) Negative: $\sigma \nvDash I$ (e.g., bad)

Implication: $\sigma \vDash I$ implies $\sigma' \vDash I$ (CTI)

Cex to Induction (CTI): Transition (σ, σ') of δ s.t. $\sigma \vDash \alpha_i, \quad \sigma' \vDash \neg \alpha_i$

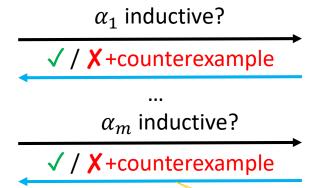


*
$$\alpha_i' = \alpha_i[V \mapsto V']$$

[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

Inductiveness-Query Model

inference algorithm



inductiveness-query oracle

 $\alpha_i \wedge \delta \wedge \neg \alpha_i'$ unsat?

ICE framework - Learn from examples:

Positive : $\sigma \models I$ (e.g., initial)

Negative: $\sigma \not\models I$ (e.g., bad)

Implication: $\sigma \models I$ implies $\sigma' \models I$ (CTI)

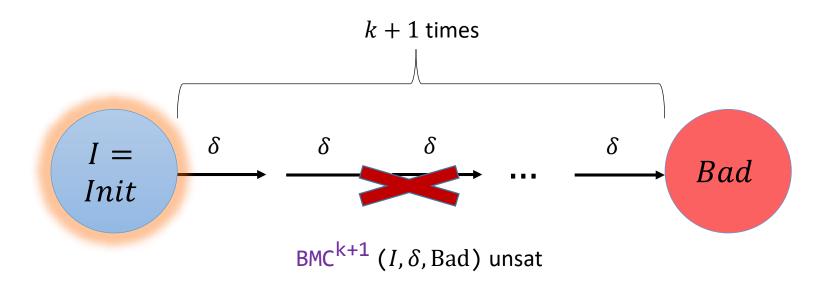
Cex to Induction (CTI): Transition (σ, σ') of δ s.t. $\sigma \models \alpha_i, \quad \sigma' \models \neg \alpha_i$

Is it sufficient to capture existing SAT-based algorithms?

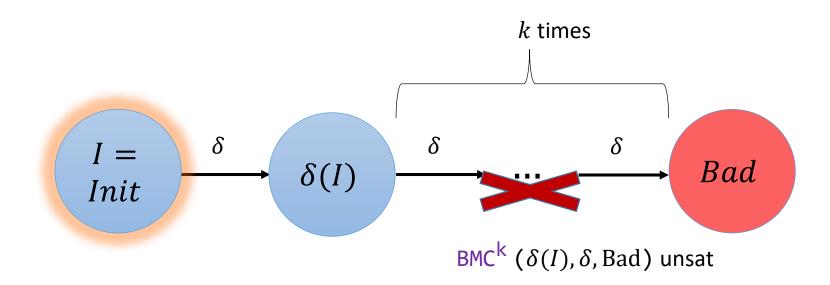
* $\alpha_i' = \alpha_i[V \mapsto V']$

[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

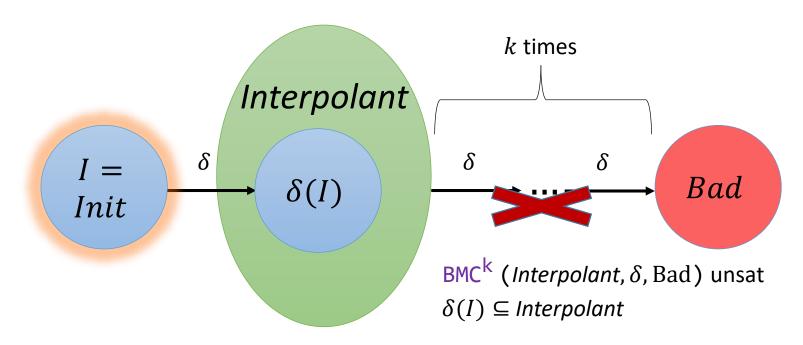
$$I = Init$$



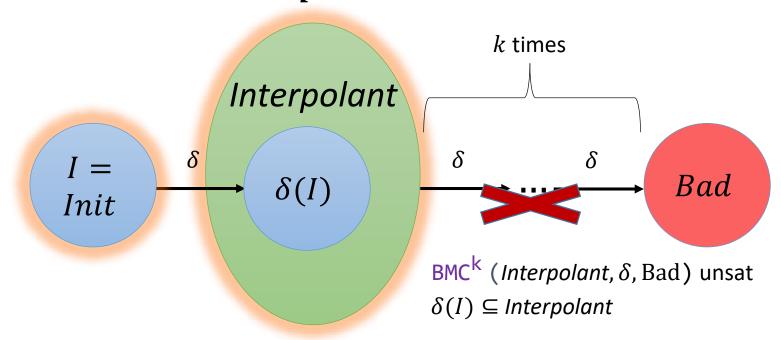
$$I = Init$$



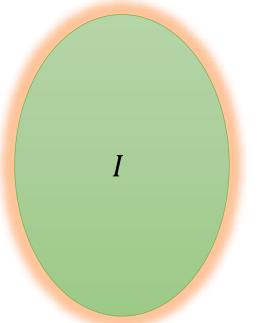
$$I = Init$$



$I = Init \lor Interpolant$

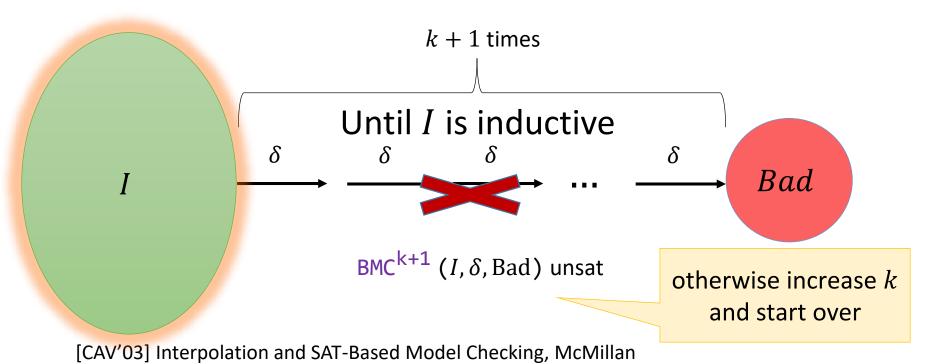


 $I = Init \lor Interpolant$

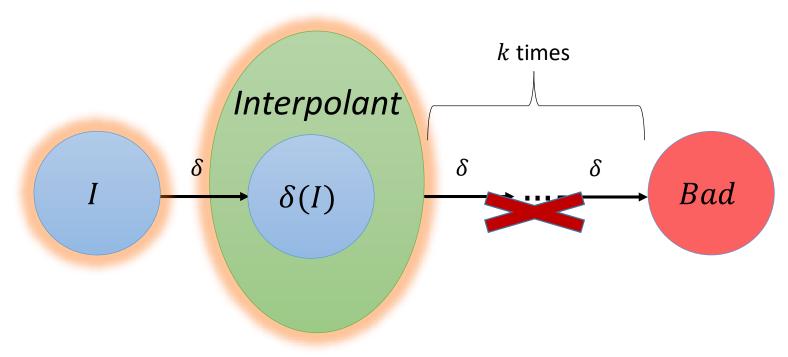


Inductive?

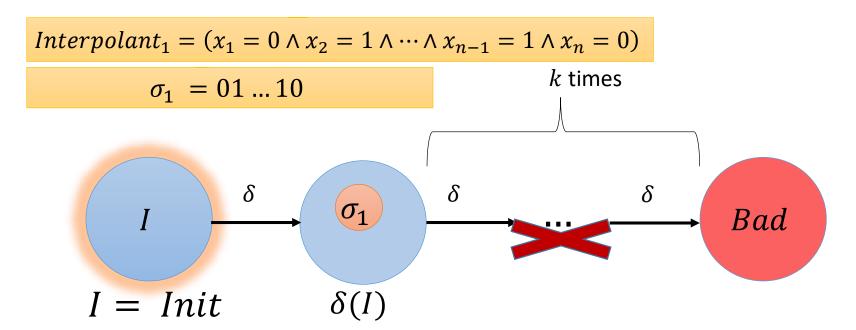
$I = Init \lor Interpolant \lor Interpolant_2 \lor ...$



Computing an Interpolant



$$\begin{array}{ll} \underline{\text{Init}:} & \underline{\delta}: \\ (x_1, \dots, x_n) & \coloneqq 0 \dots 0 \\ & \underline{\text{Bad}:} \\ (x_1, \dots, x_n) & = 1 \dots 1 \end{array} \qquad \begin{array}{ll} \underline{\delta}: \\ y_1, \dots, y_n & \coloneqq * \\ x_1, \dots, x_n & \coloneqq (x_1, \dots, x_n) + \\ \underline{2} \cdot (y_1, \dots, y_n) & (\text{mod } 2^n) \end{array}$$



$$\frac{\ln it:}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_{n-1} = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10 \qquad k \text{ times}$$

$$I = Init \qquad \delta(I)$$

$$\frac{\ln it:}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_{n-1} = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10 \qquad k \text{ times}$$

$$I = Init \qquad \delta(I)$$

$$\frac{\text{Init:}}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_{n-1} = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10 \qquad k \text{ times}$$

$$I = Init \qquad \delta(I)$$

$$\frac{\ln it:}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_{n-1} = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10 \qquad k \text{ times}$$

$$I = Init \qquad \delta(I)$$

$$\frac{\ln it:}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_{n-1} = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10 \qquad k \text{ times}$$

$$I = Init \qquad \delta(I)$$

$$\frac{|\text{nit}:}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$I = Init \lor (x_n = 0)$$

$$k \text{ times}$$

$$I = Init \qquad \delta(I)$$

Inferring invariant in DNF:

$$\underbrace{ \begin{pmatrix} \ell_1^1 \wedge \cdots \wedge \ell_{k_1}^1 \end{pmatrix}}_{\text{gen}(\sigma_1)} \vee \ldots \vee \underbrace{ \begin{pmatrix} \ell_1^m \wedge \cdots \wedge \ell_{k_m}^m \end{pmatrix}}_{\text{gen}(\sigma_m)}$$

ITP-k:

```
I := \text{false}

while (\_, \sigma') counterexample to \text{Inductive}(\delta, I):

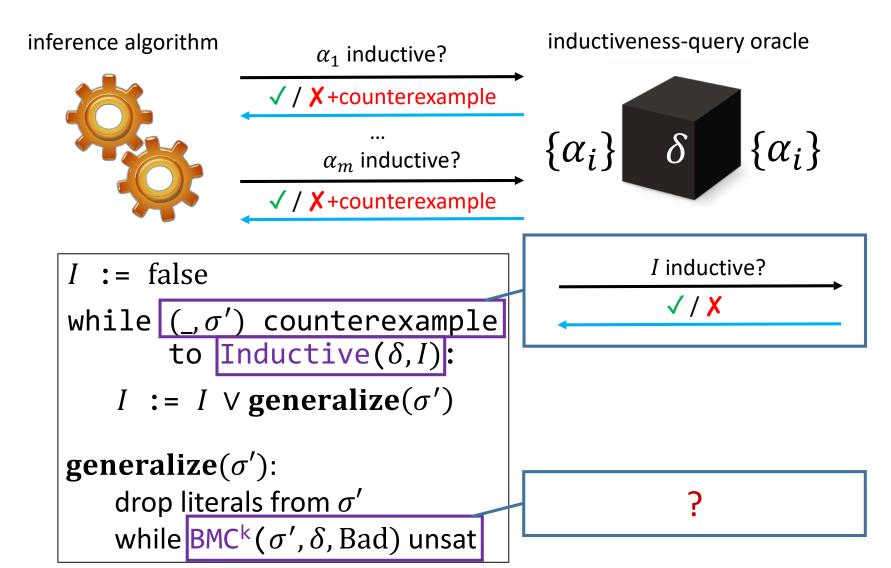
I := I \lor \text{generalize}(\sigma')

generalize (\sigma'):

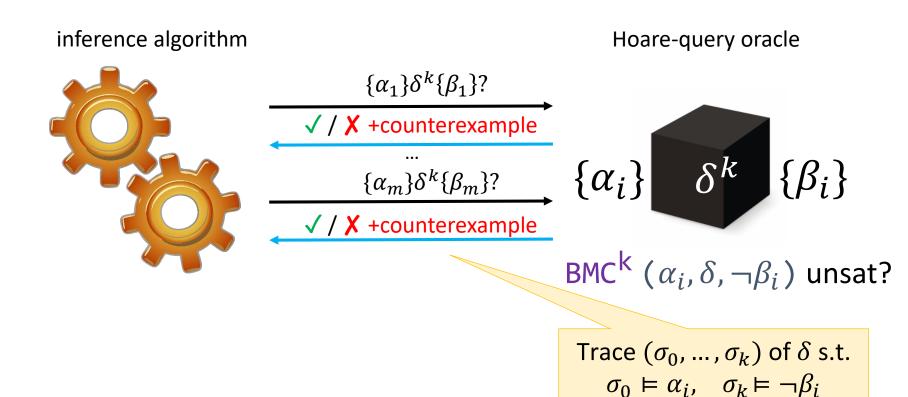
drop literals from \sigma'

while \text{BMC}^k(\sigma', \delta, \text{Bad}) unsat
```

Inductiveness-Query Model

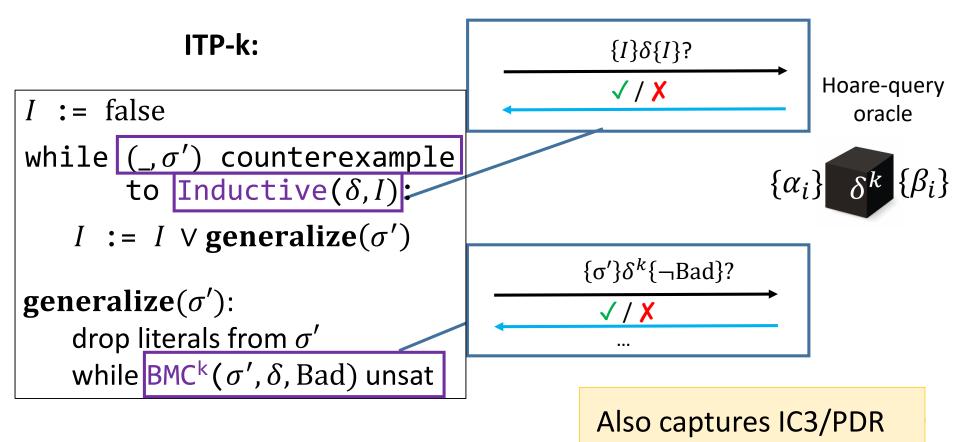


Hoare-Query Model



Capable of modeling several interesting algorithms

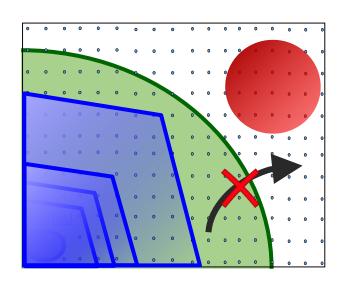
Hoare-Query Model



Outline

Invariant Inference

Exact Concept Learning



VS.



- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in DNF$ s.t. $|I| \leq poly(n)$

n is the vocabulary size, k = poly(n)

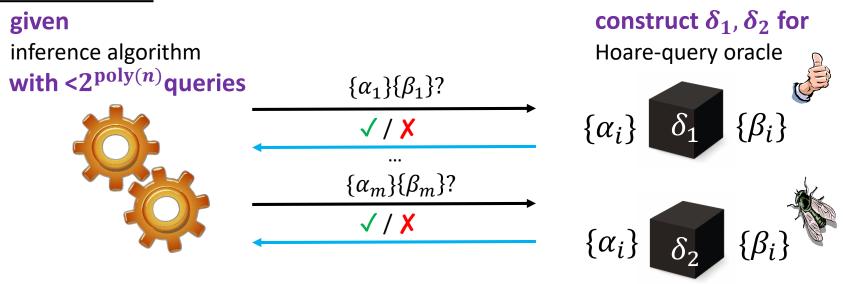
Throughout the talk

- even with unlimited computational power
- unconditional lower bound

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in DNF$ s.t. $|I| \leq poly(n)$

Proof sketch:

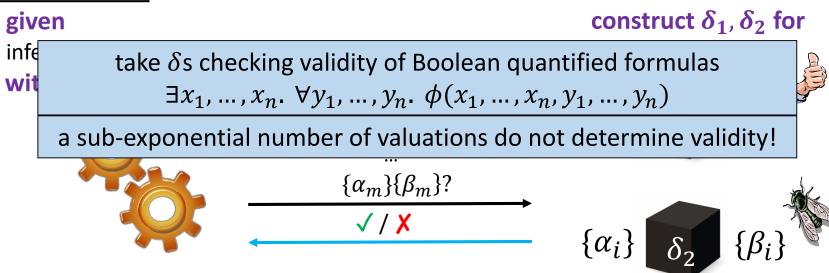


- 1. δ_1 has an inductive invariants with at most n cubes
- 2. δ_2 does not (in fact, unsafe)
- 3. all queries return the same answer for δ_1 , δ_2

Hoare-Query Complexity

<u>Thm</u>: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in DNF$ s.t. $|I| \leq poly(n)$

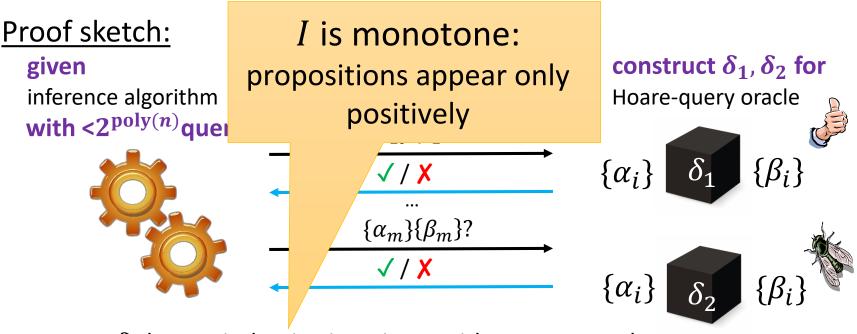
Proof sketch:



- 1. δ_1 has an inductive invariants with at most n cubes
- 2. δ_2 does not (in fact, unsafe)
- 3. all queries return the same answer for δ_1 , δ_2

Hoare-Query Complexity

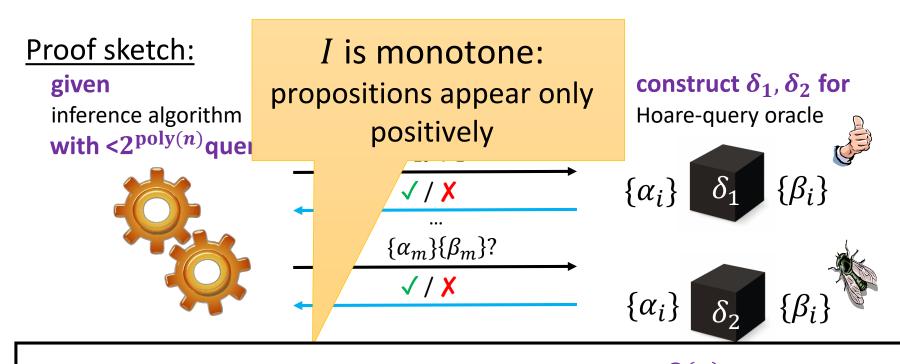
Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in DNF$ s.t. $|I| \leq poly(n)$



- 1. δ_1 has an inductive invariants with at most n cubes
- 2. δ_2 does not (in fact, unsafe)
- 3. all queries return the same answer for δ_1 , δ_2

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in DNF$ s.t. $|I| \leq poly(n)$



Cor: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring short monotone DNF invariants

Thm: There exists a class of transition systems \mathcal{P} , so that for solving inference:

- 1. \exists Hoare-query algorithm (with k=1) with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

Thm: There exists a class of transition systems \mathcal{P} , so that for solving inference:

- 1. \exists Hoare-query algorithm (with k=1) with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

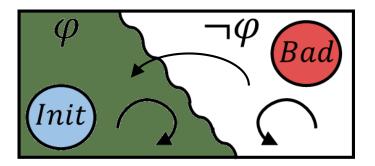
Proof:

 \mathcal{P} = maximal transition systems for monotone DNF with n cubes

propositions appear only positively

$$\varphi = x_1 \vee (x_2 \wedge x_3)$$

Maximal system for φ :



Upper bound:

 \blacksquare Hoare-query algorithm (with k=1) with poly(n) queries

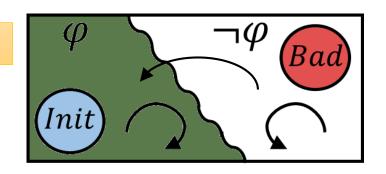
Proof: ITP-1 takes $O(n^2)$ queries

I := false $\text{while } (_, \sigma') \text{ counterexample}$ $\text{ to } \text{Inductive}(\delta, I) :$ $I := I \vee \text{generalize}(\sigma')$ $\text{generalize}(\sigma') :$ $\text{drop literals from } \sigma' \qquad \sigma' \Rightarrow \varphi$ $\text{while } \text{BMC}^1(\sigma', \delta, \text{Bad}) \text{ unsat}$

 φ is monotone

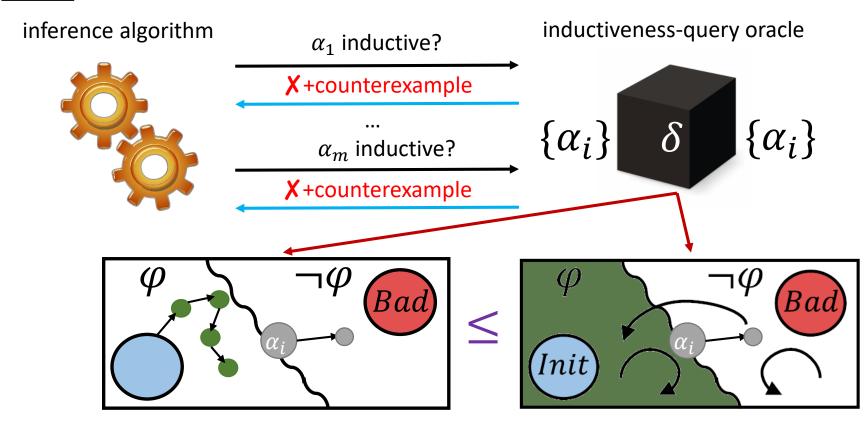
1 iteration 1 iteration

$$\varphi = x_1 \vee (x_2 \wedge x_3)$$



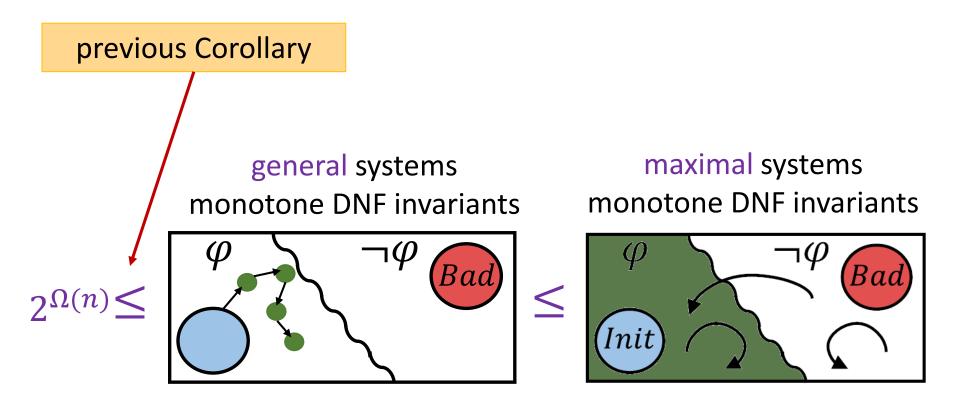
Lower bound:

 \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries Proof:



Lower bound:

 \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries Proof:



Thm: There exists a class of transition systems \mathcal{P} , so that for solving inference:

- 1. \exists Hoare-query algorithm (with k=1) with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

Similar proof works with a simple case of IC3/PDR

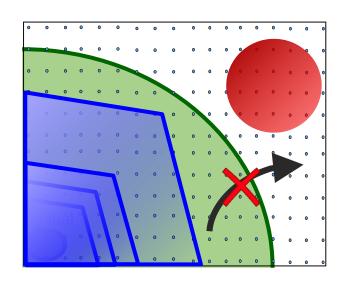
⇒ ICE cannot model PDR, and the extension of [VMCAI'17] is necessary

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv [VMCAI'17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.

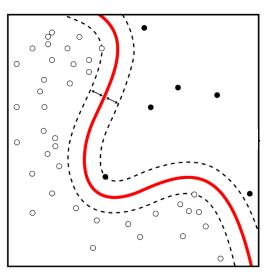
Outline

Invariant Inference

Exact Concept Learning



VS.

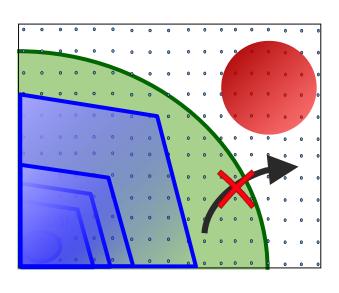


- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms
 from concept learning algorithms

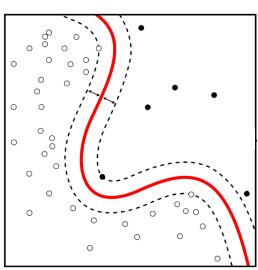
Inferring Monotone DNF

Invariant Inference

Exact Concept Learning



VS.

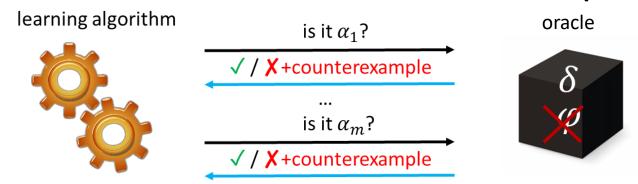


	Maximal	General			
Inducti	ve $2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential	
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly	

Inductiveness vs. Equivalence Queries

Invariant Inference

Exact Concept Learning



Counterexamples to induction:

$$\sigma \vDash \neg \varphi \text{ or } \sigma' \vDash \varphi$$

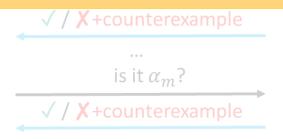
Positive/negative examples:

$$\sigma^+ \vDash \varphi$$
 , $\sigma^- \vDash \neg \varphi$

	Mavimal	General			
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential	
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly	

Inductiveness vs. Equivalence Queries

<u>Thm</u>: Learning from counterexamples to induction is **harder** than learning from positive/negative examples.



Counterexamples to induction:

$$\sigma \vDash \neg \varphi \text{ or } \sigma' \vDash \varphi$$

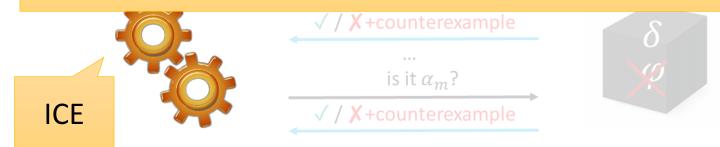
Positive/negative examples:

$$\sigma^+ \vDash \varphi$$
 , $\sigma^- \vDash \neg \varphi$

	Mavimal	General			
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential	
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly	

Inductiveness vs. Equivalence Queries

<u>Thm</u>: Learning from counterexamples to induction is **harder** than learning from positive/negative examples.



Counterexamples to induction:

$$\sigma \vDash \neg \varphi \text{ or } \sigma' \vDash \varphi$$

Positive/negative examples:

$$\sigma^+ \vDash \varphi$$
 , $\sigma^- \vDash \neg \varphi$

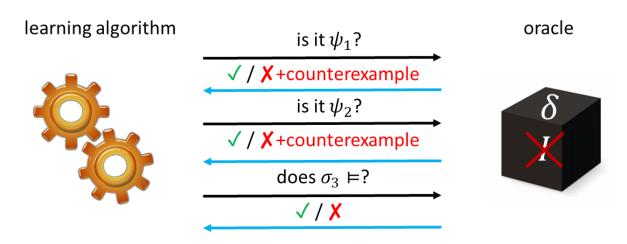
	Maximal	General			
Inducti	ve $2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential	
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly	

[ML'87] Queries and Concept Learning, Angluin

[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

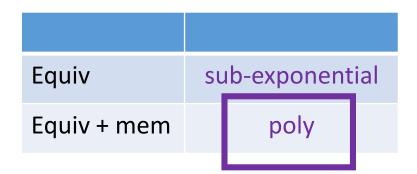
Invariant Inference with Equivalence & Membership Queries



Invariant Inference

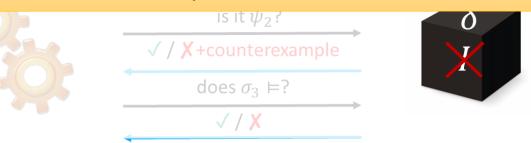
Exact Concept Learning

	Maximal	General
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$
Hoare	poly	$2^{\Omega(n)}$



Invariant Inference with Equivalence & Membership Queries

<u>Thm</u>. In general, in the Hoare-query model, **no efficient way** to implement a teacher for equivalence and membership queries



Invariant Inference

$\begin{array}{c|cccc} & \text{Maximal} & \text{General} \\ & \text{Inductive} & 2^{\Omega(n)} & 2^{\Omega(n)} \\ & \text{Hoare} & \text{poly} & 2^{\Omega(n)} \end{array}$

Exact Concept Learning

Equiv	sub-exponential			
Equiv + mem		poly		

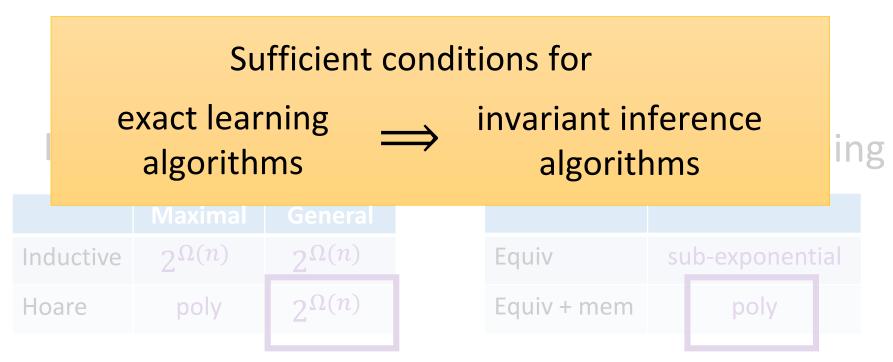
[ML'87] Queries and Concept Learning, Angluin

[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Invariant Inference with Equivalence & Membership Queries

<u>Thm</u>. In general, in the Hoare-query model, **no efficient way** to implement a teacher for equivalence and membership queries



[ML'87] Queries and Concept Learning, Angluin

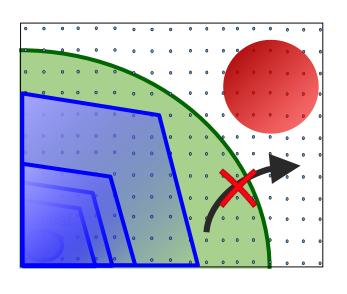
[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

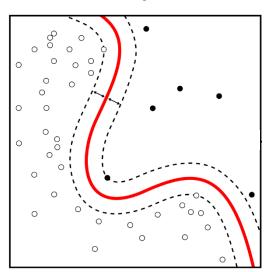
Outline

Invariant Inference

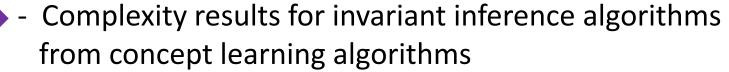
Exact Concept Learning

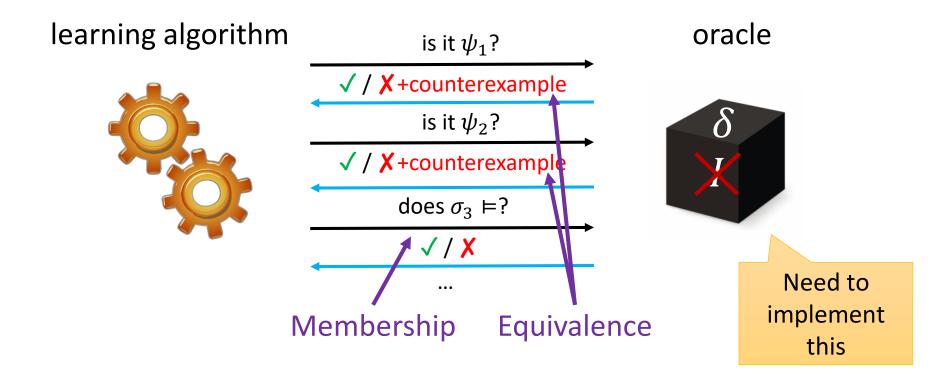


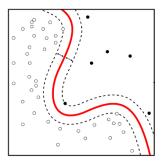
VS.



- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning







Exact **learning**DNF formulas

```
\psi := false

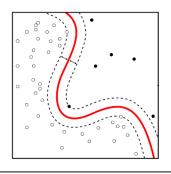
while \sigma' counterexample to Equivalence(\psi):

\psi := \psi \vee generalize(\sigma')

generalize(\sigma'):

drop literals from \sigma'
while Membership(\sigma') = \checkmark
```

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt



Exact **learning**DNF formulas

```
\psi := false

while \sigma' counterexample

to Equivalence(\psi):

\psi := \psi \vee generalize(\sigma')

generalize(\sigma'):

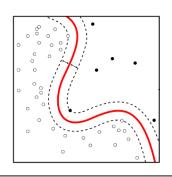
drop literals from \sigma'

while Membership(\sigma') = \checkmark
```

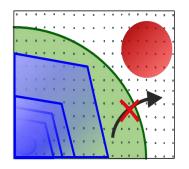
Inductive(I)

 $BMC^k(\sigma', \delta, Bad)$ unsat

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt



Exact **learning**DNF formulas



Chockler, Ivrii, Matsliah

InferringDNF invariants

```
\psi := false

while \sigma' counterexample
	to Equivalence(\psi):-
	\psi := \psi \vee generalize(\sigma')

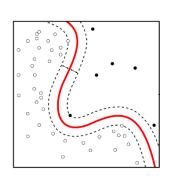
generalize(\sigma'):
	drop literals from \sigma'
	while Membership(\sigma') = \checkmark
```

I := falsewhile (_, σ') counterexample

→ to Inductive(I): $I := I \lor generalize(\sigma')$ $generalize(\sigma'):$ drop literals from σ'→ while BMC^k(σ', δ, Bad) unsat

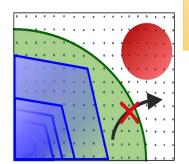
[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

[CAV'03] Interpolation and SAT-Based Model Checking, McMillan [HVC'12] Computing Interpolants without Proofs.



Efficiently

Exact **learning**DNF formulas



Efficiently

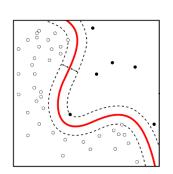
InferringDNF invariants

```
· - falco
    := false
                           When is the
while \sigma' counte
                                                            ') counterexample
                           transformation correct?
                                                           Inductive(I):
         to Equiva
                                                           \lor generalize(\sigma')
    \psi := \psi \vee \operatorname{ger}_{\mathbf{c}}
generalize(\sigma'):
                                            generalize(\sigma'):
                                                 drop literals from \sigma'
    drop literals from \sigma'
                                                while BMC^k(\sigma', \delta, Bad) unsat
    while Membership(\sigma')=\checkmark
```

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

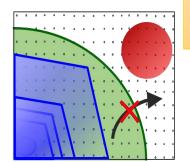
[CAV'03] Interpolation and SAT-Based Model Checking, McMillan

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah



Efficiently

Exact **learning**DNF formulas



Chockler, Ivrii, Matsliah

Efficiently

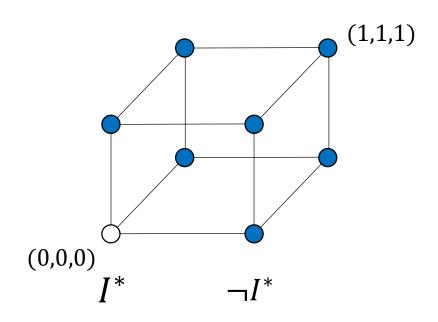
InferringDNF invariants

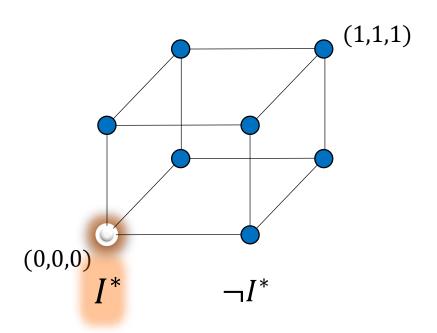
Thm: can implement queries when the invariant is k-fenced and the algorithm's queries are one-sided

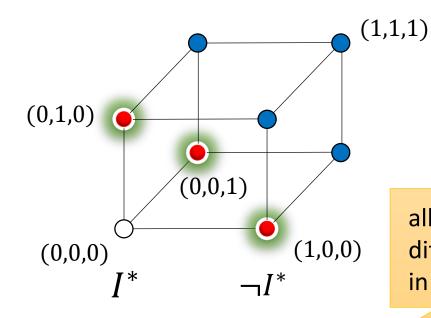
generalize(σ'): drop literals from σ' while Membership(σ') = \checkmark generalize(σ'):
drop literals from σ' while BMC^k(σ' , δ , Bad) unsat

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

[CAV'03] Interpolation and SAT-Based Model Checking, McMillan [HVC'12] Computing Interpolants without Proofs.



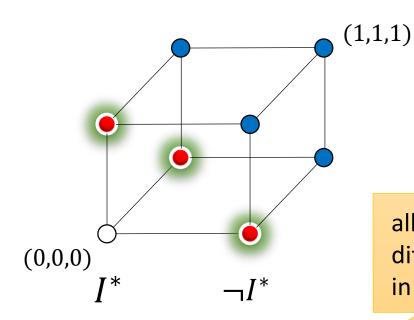




all states $\sigma \notin I^*$ that differ from some $\sigma' \in I^*$ in one bit

$$\partial^-(I^*)$$

Outer boundary



all states $\sigma \notin I^*$ that differ from some $\sigma' \in I^*$ in one bit

 I^* is k-fenced if all the states in $\partial^-(I^*)$ can reach a bad state in at most k steps

Example: k-Fenced Invariant

$$\begin{array}{ll} \underline{\text{lnit}:} & \underline{\delta}: \\ (x_1,\ldots,x_n) &\coloneqq 0\ldots 0 & y_1,\ldots,y_n &\coloneqq * \\ \underline{\text{Bad}:} & x_1,\ldots,x_n &\coloneqq (x_1,\ldots,x_n) + \\ (x_1,\ldots,x_n) &= 1\ldots 1 & 2 \cdot (y_1,\ldots,y_n) \pmod{2^n} \end{array}$$

$$I^*$$
: $x_n \neq 1$

all the states in $\partial^-(I^*) = \{x_n = 1\}$ can reach a bad state in at most k steps = 1

Example: k-Fenced Invariant

$$\begin{array}{ll} \underline{\text{lnit}} \colon & \underline{\delta} \colon \\ (x_1, \dots, x_n) & \coloneqq 0 \dots 0 \\ & \underline{\text{Bad}} \colon \\ (x_1, \dots, x_n) & = 1 \dots 1 \end{array} \qquad \begin{array}{ll} \underline{\delta} \colon \\ y_1, \dots, y_n & \coloneqq * \\ x_1, \dots, x_n & \coloneqq (x_1, \dots, x_n) + \\ \underline{2} \cdot (y_1, \dots, y_n) & (\text{mod } 2^n) \end{array}$$

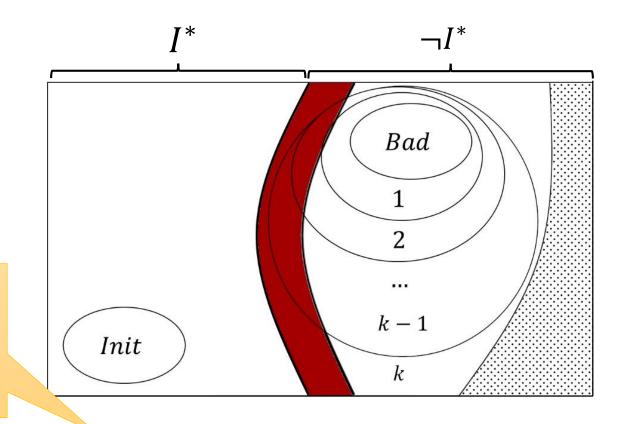
In general **not** all states in $\neg I^*$ need to reach bad

$$I^*$$
: $x_n \neq 1$

In this example $\neg I^*$

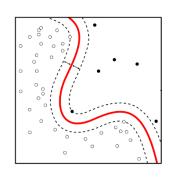
all the states in
$$\partial^-(I^*) = \{x_n = 1\}$$

can reach a bad state in at most k steps $= 1$



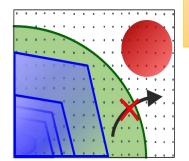
In general **not** all states in $\neg I^*$ need to reach bad

all the states in $\partial^-(I^*)$ can reach a bad state in at most k steps



Efficiently

Exact **learning**DNF formulas



Efficiently

InferringDNF invariants

Thm: can implement queries when the invariant is k-fenced and the algorithm's queries are one-sided

One-Sided Equivalence(ψ): $\psi \Rightarrow \varphi$

One-Sided Membership(σ): $\sigma \in \varphi \cup \partial^-(\varphi)$

One-Sided Equivalence Queries to Invariants

inference algorithm

teacher

Always return σ' as positive example

is ψ an inductive invariant?

√ yes hooray!

X+counterexample transition:

$$(\sigma, \sigma')$$
 s.t. $\sigma \models \psi, \sigma' \models \neg \psi$

One-Sided Membership Queries to k-Fenced Invariants

inference algorithm

$$\sigma \in \varphi \cup \partial^-(\varphi)$$

teacher

is
$$\sigma_3 \models$$
?

can't σ_3 reach bad states in k steps?

BMC^k(σ_3 , δ , Bad) unsat?

Doesn't always imply that $\sigma_3 \models I^*$

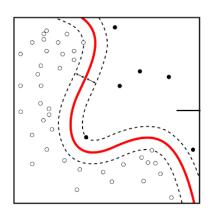
✓ then yes

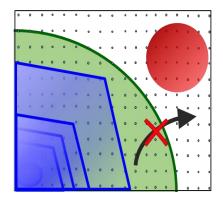
X then no

<u>Thm</u>: Let \mathcal{C} be a class of formulas.

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with polynomially-many one-sided queries}$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with polynomially-many}$ $\mathsf{SAT queries}$ $\mathsf{whenever } I^* \text{ is } k\text{-fenced}$





Thm 1: C = monotone DNF

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with polynomially-many one-sided queries}$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with polynomially-many}$ $\mathsf{SAT queries}$ $\mathsf{whenever } I^* \text{ is } k\text{-fenced}$

Thm 1: C = monotone DNF

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with polynomially-many one-sided queries}$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with }$ polynomially-many SAT queries whenever I^* is k-fenced

```
\psi := \text{false} \qquad \psi \Rightarrow \varphi \qquad I := \text{false}
\text{while } \sigma' \text{ counterexample} \qquad \text{while } (\_,\sigma') \text{ counterexample}
\text{to } \text{Equivalence}(\psi) : \qquad \text{to } \text{Inductive}(I) :
\psi := \psi \vee \text{generalize}(\sigma') \qquad I := I \vee \text{generalize}(\sigma')
\text{generalize}(\sigma') : \qquad \sigma' \in \varphi \cup \partial^-(\varphi) \qquad \text{generalize}(\sigma') :
\text{drop literals from } \sigma' \qquad \text{drop literals from } \sigma' \qquad \text{while } \text{BMC}^k(\sigma', \delta, \text{Bad}) \text{ unsat}
```

Thm 1: \mathcal{C} = monotone DNF

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with polynomially-many one-sided queries}$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with polynomially-many }$ SAT queries whenever I^* is k-fenced

Thm 1: The interpolation-based algorithm converges in a polynomial number of SAT queries if I^* is

- k-fenced, and
- has a short monotone DNF representation

[CACM'84] A Theory of the Learnable. Valiant
[ML'87] Queries and Concept Learning. Angluin
[ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

Thm 2: C = almost-monotone DNF

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with polynomially-many one-sided queries}$

 $\exists \mathcal{A} \text{ inferring } I^* \in \mathcal{C} \text{ with polynomially-many }$ SAT queries whenever I^* is k-fenced

Thm 2: A different algorithm converges in a polynomial number of SAT queries if If I^* is

- k-fenced, and
- has a short almost-monotone DNF representation

at most O(1) terms include negated variables

[Inf. Comput. '95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

Inference from Unrestricted Queries

Thm': Let \mathcal{C} be a class of formulas.

two-sided

 $\exists \mathcal{A} \text{ identifying } \varphi \in \mathcal{C} \text{ with polynomially-many one sided queries}$

 $\exists \mathcal{A} \text{ inferring }^* \in \mathcal{C} \text{ with polynomia y-many }$ $\mathsf{SAT} \text{ queries }$ $\mathsf{whenever} \ I^* \text{ is } k\text{-fenced}$

Thm 3: A different algorithm converges in a polynomial number of SAT queries if I^* is

- two-sided k-fenced, and
- has a short DNF and a short CNF representation e.g., I^* is expressible as a short decision tree

[Inf. Comput. '95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

Inference from Unrestricted Queries

Thm': Let \mathcal{C} be a class of formulas.

two-sided

 $\exists \mathcal{A} \text{ inferring }^* \in \mathcal{C} \text{ with }$

Thm: also when I^* is one-sided k-fenced but not by transformation from learning in y-many is k-fenced.

Thm 3: A different algorithm converges in a polynomial number of SAT queries if I^* is

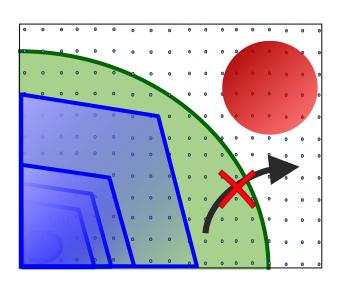
- two-sided k-fenced, and
- has a short DNF and a short CNF representation e.g., I^* is expressible as a short decision tree

[Inf. Comput. '95] Exact Learning Boolean Function via the Monotone Theory. Bshouty [SAS '22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham

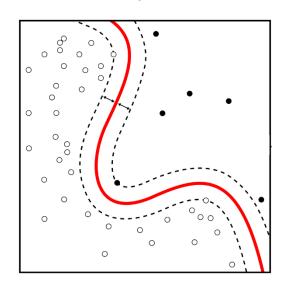
Conclusion (1)

Invariant Inference

Exact Concept Learning



VS.

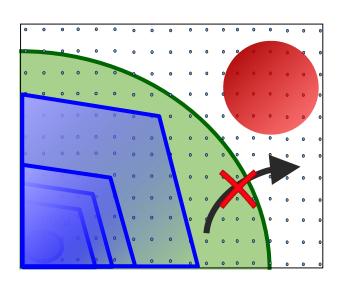


- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

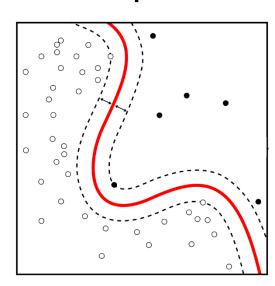
Conclusion (2)

Invariant Inference

Exact Concept Learning



VS.



- What about IC3/PDR?
- Impact of k in the Hoare query model?
- Is the fence condition necessary?
- Other conditions?
- Beyond Boolean programs