The Stochastic Arrival Problem

Thomas Webster

University of Edinburgh

Reachability Problems, October 2022

ARRIVAL ([DGKMW,17])

We are given the following input:

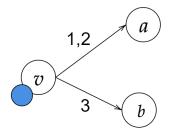
- A directed graph (V, E),
- A source vertex $s \in V$,
- A target vertex $t \in V$,
- For each $v \in V$ an ordered list $Ord(v) := (w_0, \ldots, w_{k_v-1})$ where each $(v, w_i) \in E$ is a directed edge out of v.
- Decide whether or not we reach t starting from s using a "switching walk".

A switching walk maintains a counter q_v for every vertex $v \in V$, initialized to 0, which counts how many times that vertex has been visited thusfar during the walk.

If the switching walk starting at s is currently at vertex v, then the next edge used by the switching walk is to w_j , where $j \equiv q_v \pmod{k_v}$.

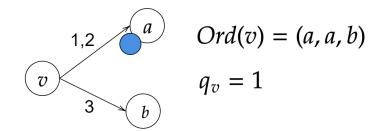
We can view the vector of counter values $\langle q_v \pmod{k_v} | v \in V \rangle$ to be our current "**switching state**" and call the (exponentially large) set of possible switching states Q.

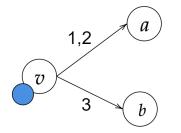
ARRIVAL instances can be viewed as a succinct presentation of exponentially larger reachability problem on a directed graph without Switching, with state space $V \times Q$.



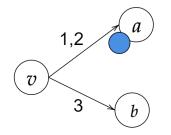
$$Ord(v) = (a, a, b)$$

 $q_v = 0$

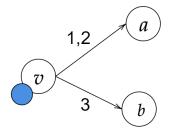




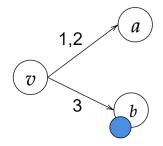
Ord(v) = (a, a, b) $q_v = 1$



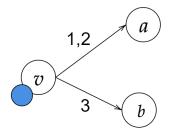
Ord(v) = (a, a, b) $q_v = 2$



Ord(v) = (a, a, b) $q_v = 2$



Ord(v) = (a, a, b) $q_v = 0$



$$Ord(v) = (a, a, b)$$

 $q_v = 0$

Prior Work on ARRIVAL and its extension to Switching Games

Known complexity results for ARRIVAL

- ARRIVAL is in NP \cap coNP, but not known to be in P ([DGKMW'17])
- It is in PLS, CLS and UniqueEOPL ([K'17],[GHHKMS'18],[FGMS'19])
- There is a sub-exponential algorithm for ARRIVAL. ([GHH'21])

Prior Work on ARRIVAL and its extension to Switching Games

Known complexity results for ARRIVAL

- ARRIVAL is in NP \cap coNP, but not known to be in P ([DGKMW'17])
- It is in PLS, CLS and UniqueEOPL ([K'17],[GHHKMS'18],[FGMS'19])
- There is a sub-exponential algorithm for ARRIVAL. ([GHH'21])

Reachability Switching Games

Fearnley, Gairing, Mnich & Savani (2021) considered 1 and 2 player extensions, where nodes are either controlled by one of the players, or are **switching nodes** following a given switching order on outgoing edges.

Randomisation & Switching

- We look at extensions to ARRIVAL where there are also **random nodes** where the walk advances randomly or are **switching nodes** following the given switching order.
- We also consider extensions with players in addition to random and switching nodes.
- These correspond to succinct representations of exponentially-large Markov Chains, Markov Decision Processes and Simple Stochastic Games.

Combining randomisation nodes with Switching and player nodes.

Definition (*B***-Arrival problem instance)**

We partition the nodes V into four different types:

- V_R : Walk makes a uniformly random choice over outgoing edges
- V_S : Switching behaviour determined by Ord
- V_1 : Controlled by player 1, who is trying to reach t
- V_2 : Controlled by player 2, who is trying to avoid t

For some set $B \subseteq \{R, S, 1, 2\}$ we use *B*-Arrival to describe instances only containing node types in *B*, e.g., $\{R, S, 1\}$ -Arrival denotes instances which may contain nodes of type *R*, *S* and 1, but none of type 2.

Definition (value)

We define the **value of the instance** as follows. Let *Reach* be the event of eventually hitting *t* starting at *s*, and let σ_1 and τ_2 range over strategies for player 1 and 2, respectively. Define the **value** of the stochastic switching game as:

$$\mathsf{val}(\mathsf{G}) := \max_{\sigma_1} \min_{ au_2} \mathbb{P}_{\sigma_1, au_2}(\mathsf{\textit{Reach}})$$

Problems

Let $p \in (0, 1)$ be a given (rational) probability input. We define three variants of *B*-Arrival decision problems:

- B-Arrival-Quant: Decide whether val(G) > p.
- *B*-Arrival-Qual-0: Decide whether val(G) > 0.
- *B*-Arrival-Qual-1: Decide whether val(G) = 1.

Prior Results on Reachability Switching Games

Theorem ([FGMS'21])

 $\{S, 1\}$ -Arrival is NP-complete.

Theorem ([FGMS'21])

 $\{S, 1\}$ -Arrival is NP-complete.

Theorem ([FGMS'21])

 $\{S, 1, 2\}$ -Arrival-Quant is PSPACE-hard.

Theorem ([FGMS'21])

There is an EXPTIME algorithm to decide $\{S, 1, 2\}$ -Arrival.

Theorem

 $\{R, S\}$ -Arrival-Quant is PP-hard.

Theorem

There is a PSPACE algorithm to decide $\{R, S\}$ -Arrival-Quant.

Theorem

 $\{R, S\}$ -Arrival-Quant is PP-hard.

Theorem

There is a PSPACE algorithm to decide $\{R, S\}$ -Arrival-Quant.

Theorem

 $\{R, S, 1\}$ -Arrival-Quant is PSPACE-hard.

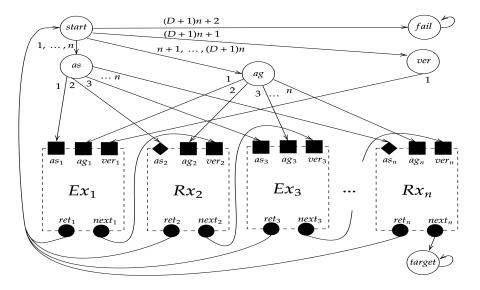
We reduce from a PSPACE-hard problem defined by Papadimitriou (85):

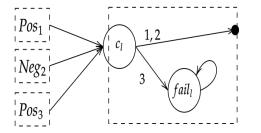
Definition (SSAT)

- Given a 3CNF formula φ
- Reading Я as "for uniformly random"
- Decide if:

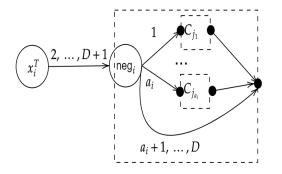
$$\exists x_1 \exists x_2 \exists x_3 \dots \exists x_n [\mathbb{P}(\varphi(x_1, \dots, x_n) = \top) > \frac{1}{2}]$$

(1)





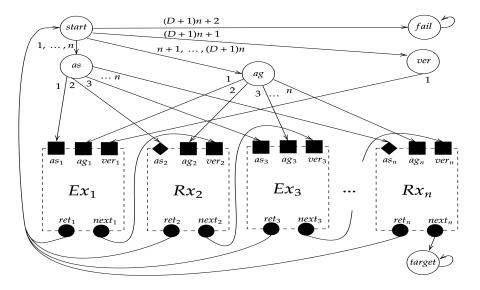
 $C_l: x_1 \vee \neg x_2 \vee x_3$

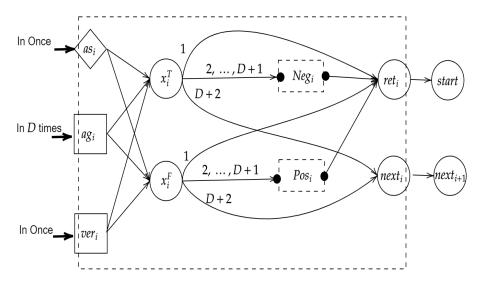


$$C_{j_1}, \ldots, C_{j_{a_i}}$$

are clauses containing the literal $\neg x_i$

D suff. large constant





A PSPACE Algorithm for $\{R, S\}$ -Arrival-Quant

- We can use {R, S}-Arrival-Qual-0 as a subroutine within PSPACE to eliminate states (v, q) ∈ V × Q that have no paths to the target.
- We can check reachability in the exponentially sized Markov Chain to eliminate states (v, q) ∈ V × Q that can't be reached from the start.
- We can then compute in PSPACE elements of a modified transition matrix *P* for the exponential Markov Chain, with some branches pruned to make the chain irreducible.
- We can compute a given bit of an entry of P^{-1} , thus finding the leading bit of the hitting probability.
- Showing the $val(G) \ge \frac{1}{2}$ and $val(G) > \frac{1}{2}$ are equivalent.

New Results

A full list of results shown in the paper:

Problem Name	Complexity
$\{S,2\}$ -Arrival	NP-complete
$\{R,S\}$ -Arrival-Qual-0	NP-complete
$\{R,S\}$ -Arrival-Qual-1	coNP-complete
$\{R, S\}$ -Arrival-Quant	PP-hard, in PSPACE
$\{R, S, 1\}$ -Arrival-Qual-0	NP-complete
$\{R, S, 1\}$ -Arrival-Qual-1	coNP-hard, in EXPTIME
$\{R, S, 1\}$ -Arrival-Quant	PSPACE-hard, in EXPTIME
$\{R, S, 2\}$ -Arrival-Qual-0	equiv $\{S, 1, 2\}$ -Arrival
$\{R, S, 2\}$ -Arrival-Qual-1	in EXPTIME
$\{R, S, 2\}$ -Arrival-Quant	PSPACE-hard, in EXPTIME
$\{R, S, 1, 2\}$ -Arrival-Qual-0	equiv $\{S,1,2\}$ -Arrival
$\{R, S, 1, 2\}$ -Arrival-Qual-1	in NEXPTIME \cap coNEXPTIME
$\{R, S, 1, 2\}$ -Arrival-Quant	$\begin{array}{l} PSPACE-hard, \\ in \ NEXPTIME \cap coNEXPTIME \end{array}$