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Synopsis of Today’s Talk

 This seminal talk is concerned with 
• the number of accepting computation paths of 

nondeterministic finite automata.   
 I will introduce 

• new nonuniform language families.
 I will prove 

• inclusions and separations of those nonouniform
language families.
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I. Historical Background



Number of Accepting Computation Paths I

• In nondeterministic computation, the number of 
accepting computation paths is of interest.

• There are well-known complexity classes associated 
with such a number.

• ambiguous (or unique) computation
 UP : Valiant (1976)

• few (accepting path) computation
 FewP : Allender (1986), Allender-Rubinstein (1987)

• P  UP  FewP  NP



Number of Accepting Computation Paths II

• UL and FewL are later introduced by Buntrock, Jenner, 
Lange, and Rossmanith (1991).

• L  UL  FewL  NL

• Reinhardt and Allender (2000) proved that
UL/poly = NL/poly,

where “poly” refers to the Karp-Lipton-type polynomial-
size advice.

• Bourke, Tewari, and Vinodchandran (2009) and Pavan, 
Tewari, and Vinodchandran (2012) introduced:
ReachUL, ReachFewL, ReachLFew, and FewUL.



Nonuniform State Complexity

Nonuniform State Complexity
• Berman-Lingas (1977) and Sakoda-Sipser (1978) 

considered complexity classes of families of promise 
decision problems solved by nonuniform families of nO(1)-
state finite automata. 

• Lately, Kapoutsis (2009,2012,2014) and Kapoutsis-
Pighizzini (2015) revitalized the study.

• Yamakami (2018) further expanded the scope of the 
study by introducing various complexity classes.

• Yamakami (2019) presented a further work on 
relativizations of nonuniform state complexity classes.  



Nondeterministic Finite Automata

• In this work, we use 1-way nondeterministic finite 
automata (1dfa’s) and 2-way nondeterministic finite 
automata (2dfa’s) as machine models.

• 1npda:  M = (Q,,{►,◄},,q0,Qacc,Qrej)
• transition function:  : (Q-Qhalt)({,►,◄})(Q)

q

► ◄

head direction (1-way)

read-only input tape

finite-control unit

Qhalt = QaccQrej

head direction (2-way)

power set



State Complexity of an Automata Family

• For a finite automaton M = (Q,,{►,◄},q0,Qacc,Qrej), the 
state complexity of M is st(M) = |Q| (the number of inner 
states).

• We consider a family {Mn}nN of finite automata of the 
same type, each Mn of which is of the form 
(Qn,n,{►,◄},q0,n,Qacc,n,Qrej,n), where n =  (same 
alphabet) for all nN.

• The state complexity of this family {Mn}nN is a function 
st(n) = |Qn| in length n.

• Two families {Mn}nN and {Nn}nN of finite automata are 
said to be equivalent if, for any nN, Mn agrees with Nn
on all inputs.



Families of Promise Decision Problems

• A promise decision problem over alphabet  is a pair 
(A,R) with A,R,* and AR = , where A is a set of 
accepted strings (or YES instances) and R is a set of 
rejected strings (or NO instances).

• A machine M solves (A,R) if, for all xA, M accepts x, 
and for all xR, M rejects x. However, we do not care if 
strings x are not promised.

• Here, we consider a family  = {(Ln
(+),Ln

(-))}nN of 
promise decision problems.

• A family M = {Mn} nN of finite automata solves  if, for 
each index nN, Mn solves (Ln

(+),Ln
(-)). 

A string is promised if it 
belongs to AR.



Nonuniform State Complexity Classes

• one-way case
 1D = set of families {(Ln

(+),Ln
(-))}nN of promise 

decision problems s.t.  {Mn} nN : family of poly(n)-
state 1dfa’s for which nN [ Mn solves (Ln

(+),Ln
(-)) on 

all promised inputs ]. 
 1N = .... by families of poly(n)-state 1nfa’s ...

• two-way case
 2D = ... by families of poly(n)-state 2dfa’s
 2N = ... by families of poly(n)-state 2nfa’s



Known Inclusions and Separations

• The diagram below shows known inclusions and 
separations among nonuniform state complexity classes.

1D=1.5D

1N2D

2N

1BP

2BP

2P

21D

21Q(+)=21P

1Q(+)=1P

1BQ

21BQ
proper 
inclusion

inclusion

non-
inclusion2BQ

2Q

21BP

1.5BQ
For the definitions 
of those classes, 
see Yamakami 
(2021).
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II. Accepting Computation Paths



Unambiguity

• Let M = {Mn}nN denote any family of nondeterministic 
finite automata.

• M is unambiguous  nN x(n) [ there is at most 
one accepting computation path of Mn on input x ]

• M is weak-unambiguous  nN x(n) conf: 
“accepting” configuration of Mn on x [ there is at most 
one computation path of Mn on x from conf0 to conf ]

• M is reach-unambiguous  nN x(n) conf: 
configuration of Mn [ there is at most one computation 
path of Mn on x from conf0 to conf ]

• Here, (n) denotes the set of all promised instances in   
Ln

(+)Ln
(-). 



Fewness

• Let M = {Mn}nN denote any family of nondeterministic 
finite automata.

• M is accept-few  p: polynomial nN x(n) [ there 
are at most p(n,|x|) accepting computation paths of Mn
on input x ]

• M is reach-few  p: polynomial nN x(n) conf: 
configuration of Mn on x [ there are at most p(n,|x|)  
computation paths of Mn on x from conf0 to conf ]



New Complexity Classes

• we introduce six complexity classes.
 1Few = collection of families of promise problems solvable 

by families of accept-few 1nfa’s with polynomially many 
inner states

 1ReachFew = 1Few whose underlying 1nfa’s are reach-
few

 1ReachFewU = 1ReachFew whose underlying 1nfa’s are 
unambiguous

 1ReachU = 1ReachFewU whose underlying 1nfa’s are 
reach-unambiguous

 1FewU = 1ReachU whose underlying 1nfa’s are weak-
unambiguous

 1U = 1FewU whose underlying 1nfa’s are unambiguous

• Similarly, we can define their 2-way versions.



Examples of Promise Problem Families I

• We see some examples of families of promise problems. 

• Let [n] = { 1,2,...,n }.
• Let i1,i2,...,ikN+ and set 

𝑖ଵ, 𝑖ଶ,⋯ , 𝑖 ൌ 1భ01మ0⋯01ೖ.
• If r = [i1,i2,...,ik], then (r)(e) = the e-th entry of r.

• Let An = set of all strings of the form [i1,i2,...,ik] with 
i1,i2,...,ik[n].

• Let An(k) = { rAn | size of r is k }.

This k is called 
the size.



Examples of Promise Problem Families II

• We see some examples of families of promise problems. 

• Consider a family 1 = {(Ln
(+),Ln

(-))}nN with 
 Ln

(+) = { r1#r2 | r1,r2An(n), !e[n] [ (r1)(e)  (r2)(e) ] }, and 
 Ln

(-) = { r1#r2 | r1,r2An(n), e[n] [ (r1)(e) = (r2)(e) ] }. 
• 1 belongs to 1ReachU.

• Consider a family 2 = {(Ln
(+),Ln

(-))}nN with 
 Ln

(+) = { r1#r2 | r1,r2An(n), e[n] [ (r1)(e)  (r2)(e) ] }, and 
 Ln

(-) = { r1#r2 | r1,r2An(n), e[n] [ (r1)(e) = (r2)(e) ] }. 
• 2 belongs to 1FewU.



Ceilings

• We place a restriction on the size of instances.
• Let p: *N be any function.
• A family  has a p(n)-ceiling if 

 nN [ Ln
(+)Ln

(-)  p(n) ]

• abbreviations
 log = collection of logarithmic functions
 poly = .... of polynomials
 exp = .... of exponentials
 supexp = .... of super exponentials

• We define the following complexity classes.
 2D/poly = 2D restricted to polynomial ceilings
 2N/poly = 2N restricted to polynomial ceilings

set of all strings 
of length  p(n)
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III. Main Results



1D

1ReachFewU

1ReachFew 1U  co1U

1FewU

1Few

1N

proper 
inclusion
inclusion

1ReachU

One-Way Case

We have introduced 
6 complexity classes, 
which satisfy the 
following inclusion 
relationships.



1D

1ReachFewU

1ReachFew 1U  co1U

1FewU

1Few

1N

proper 
inclusion
inclusion

1ReachU

New Results

We obtain 3 
separations of those 
complexity classes.



2D

2ReachFewU

2ReachFew 2U

2FewU

2Few

2N

proper 
inclusion
inclusion

2ReachU

Two-Way Case

As for 2-way 1nfa’s, the 
defined 6 complexity 
classes satisfy the 
following inclusion 
relationships.



2D/poly

2ReachFew/poly

2N/poly = 2Few/poly = 2U/poly

2ReachU/poly

2ReachFewU/poly

New Results - Polynomial Ceiling

proper 
inclusion
inclusion

When underlying 2-
way 1nfa’s have 
polynomial ceilings, 
the defined 6 
complexity classes 
satisfy the following 
inclusion relationships.



Case of Other Celings
• Here are additional results for the two-way case.

• log ceiling
2N/log = 2D/log

• supexp ceiling
For any C,D{ D, ReachU, ReachFewU, ReachFew, 

U, FewU, Few, N }, 
2C/supexp  2D   2C  2D,



1. Challenging Open Questions

IV. Challenging Open Questions



Challenging Open Questions

• There are many open problems associated with the 
topics of today’s talk.

• Here, I list a few general questions.

1. Is it true that 1ReachFew  1FewU?

2. Is it true that 2N/poly = 2ReachFew/poly? 

3. Is it true that 2N  2DPD? 
2DPD = 
pushdown 
version of 2D





Q  &  A
I’m happy to take your question!
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