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Synopsis of Today’s Talk

d This seminal talk 1s concerned with

= the number of accepting computation paths of
nondeterministic finite automata.

a | will introduce
= new nonuniform language families.
a | will prove

= Inclusions and separations of those nonouniform
language families.

> Web Page = http://tomoyukiyamakami.info
> YouTube Search = Tomoyuki Yamakami
> twitter = tomoyamakami
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Number of Accepting Computation Paths |

In nondeterministic computation, the number of
accepting computation paths is of interest.

There are well-known complexity classes associated
with such a number.

ambiguous (or unique) computation

» UP : Valiant (1976)

few (accepting path) computation

» FewP : Allender (1986), Allender-Rubinstein (1987)

Pc UP c FewP < NP



Number of Accepting Computation Paths Il

« UL and FewL are later introduced by Buntrock, Jenner,
Lange, and Rossmanith (1991).

 Lc UL cFewlL < NL

* Reinhardt and Allender (2000) proved that
UL/poly = NL/poly,
where “poly” refers to the Karp-Lipton-type polynomial-
size advice.

* Bourke, Tewari, and Vinodchandran (2009) and Pavan,
Tewari, and Vinodchandran (2012) introduced:

ReachUL, ReachFewlL, ReachLFew, and FewUL.



Nonuniform State Complexity /\v{

Nonuniform State Complexity

« Berman-Lingas (1977) and Sakoda-Sipser (1978)
considered complexity classes of families of promise
decision problems solved by nonuniform families of n©1)-
state finite automata.

« Lately, Kapoutsis (2009,2012,2014) and Kapoutsis-
Pighizzini (2015) revitalized the study.

« Yamakami (2018) further expanded the scope of the
study by introducing various complexity classes.

« Yamakami (2019) presented a further work on
relativizations of nonuniform state complexity classes.



Nondeterministic Finite Automata

In this work, we use 1-way nondeterministic finite
automata (1dfa’s) and 2-way nondeterministic finite
automata (2dfa’s) as machine models.

1npda M - (Q’2’{>’<}’8’qO’Qacc’Qrej) Qhalt = QaccUQrej
transition function: 6: (Q-Qy,4)x(ZU{A, >, })xI'— 0 (Q)
power set

finite-control unit

head direction (1-way)

q
l head direction (2-way)

> o <

read-only input tape



State Complexity of an Automata Family

For a finite automaton M = (Q,Z,{>,<},00,Qucc: Qrey), the
state complexity of M is st(M) = |Q| (the number of inner
states).

We consider a family {M} _y of finite automata of the
same type, each M, of which is of the form

(Qn, 201> *1 0.0y Qace s Qrejn)» Where X = % (same
alphabet) for all neN.

The state complexity of this family {M,},_n IS a function
st(n) = |Q,| in length n.

Two families {M,},_n and {N_},_\ of finite automata are
said to be equivalent if, for any neN, M agrees with N_
on all inputs.



Families of Promise Decision Problems

A promise decision problem over alphabet ¥~ is a pair
(A,R) with A\R,cZ* and AnR = &, where A is a set of
accepted strings (or YES instances) and R is a set of

rejected strings (or NO instances). R 6 o 17

A machine M solves (A,R) if, for all xe bélongs to AUR.

and for all xeR, M rejects x. However, we do not care if
strings x are not promised.

Here, we consider a family A = {(L,("),L, )} _\ of
promise decision problems.

A family M = {M_} ,_\ Of finite automata solves A if, for
each index neN, M solves (L,™*),L.0).



Nonuniform State Complexity Classes

* Onhe-way case
» 1D = set of families {(L,*),L0)}, .\ of promise
decision problems s.t. 3 {M_}._\ : family of pon( )-
state 1dfa’s for which VneN [ M, solves (L,/),L©)) on
all promised inputs |.

» 1N = .... by families of poly(n)-state 1nfa’s ...
* two-way case

» 2D = ... by families of poly(n)-state 2dfa’s

» 2N = ... by families of poly(n)-state 2nfa’s



Known Inclusions and Separations

 The diagram below shows known inclusions and
separations among nonuniform state complexity classes.

21Q(+)=01P
A~ s proper
2Q / 21BQ inclusion
2P «_ N —> inclusion
\ T~ 4 T~ - \->  non-
2BQ 1QH=1P < inclusion

For the definitions
of those classes,
see Yamakami
(2021).
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Unambiguity

Let M = {M_},_\ denote any family of nondeterministic
finite automata.

M is unambiguous < VneN VxeX(™ [ there is at most
one accepting computation path of M, on input x ]

M is weak-unambiguous < VneN VxeX™ Vconf:
“accepting” configuration of M, on x [ there is at most
one computation path of M, on x from conf, to conf ]

M is reach-unambiguous < VneN VxeX™ VYconf:
configuration of M, [ there is at most one computation
path of M, on x from conf, to conf ]

Here, X" denotes the set of all promised instances in
L (oL, 0.



Fewness

 LetM ={M_} .\ denote any family of nondeterministic
finite automata.

« Mis accept-few < Fp: polynomial VneN vxeXZM [ there
are at most p(n,|x|) accepting computation paths of M
on input X |

« Misreach-few < 3Jp: polynomial VneN ¥xeXM Vconf:
configuration of M on x [ there are at most p(n,|X|)
computation paths of M, on x from conf;, to conf ]



New Complexity Classes

« we Introduce six complexity classes.

1Few = collection of families of promise problems solvable
by families of accept-few 1nfa’s with polynomially many
Inner states

1ReachFew = 1Few whose underlying 1nfa’s are reach-
few

1ReachFewlU = 1ReachFew whose underlying 1nfa’s are
unambiguous

1ReachU = 1ReachFewU whose underlying 1nfa’s are
reach-unambiguous

1FewU = 1ReachU whose underlying 1nfa’s are weak-
unambiguous

1U = 1FewU whose underlying 1nfa’s are unambiguous

« Similarly, we can define their 2-way versions.



Examples of Promise Problem Families |

We see some examples of families of promise problems.

Let[n]={12,...,n}. This k is called

Let iyiy....i.eN* and set / the size.
[i1,i,,, 0] = 1110120 --- 01"

If r =1[i4,i5,...,i,], then (r)(e) = the e-th entry of r.

Let A, = set of all strings of the form [i,,i,,...,I,] with
I4,00,..,0 €[N].
Let A (k) ={reA, |size of risk }.



Examples of Promise Problem Families Il

We see some examples of families of promise problems.

Consider a family A, = {(L,*),L,0)},, . With
» L = {r#r, | ry,roeAn(n), 3leen] [ (ry)e) # () 1}, and
> L0 = {r#ry | r,reAy(n), Vee[n] [(ry)e) = (e 1 }-

A, belongs to 1ReachU.

Consider a family A, = {(L,"),L )}, _y with
> L") = {r#tr, [ ry,r,eAn(n), 3een] [(ry)e) # () 1}, and
> L0 ={r#try | rroeAn(n), Veeln] [ (ry)e) = (f)e) 1}

A, belongs to 1FewU.



Ceilings

We place a restriction on the size of instances.

Let p: Z*—N be any function. set of all strings

A family A has a p(n)-ceiling if | | ofength <P(n)
V neN[L M®MUL O < Z=pi ]

abbreviations

» log = collection of logarithmic functions
» poly = .... of polynomials

» exp = .... of exponentials

» supexp = .... of super exponentials

We define the following complexity classes.

» 2D/poly = 2D restricted to polynomial ceilings
» 2N/poly = 2N restricted to polynomial ceilings
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One-Way Case

We have introduced 1N
6 complexity classes,
which satisfy the 1Few
following inclusion . el
relationships. "
""" 1FewU
1ReachFew :
,,,,,, 1U # co1U

1 ReachFewU

1ReachU
= {— r:s.z;;n}

1. D ------ inclusion




New Results

We obtain 3 1N
separations of those
complexity classes. 1Few
“““““ 1F|ewU
1ReachFew
\ 1U = co1U

1 ReachFewU

| inclusion

1ReachU
____ proper
1 D [ ------ inclusion J




Two-Way Case

As for 2-way 1nfa’s, the 2N
defined 6 complexity
classes satisfy the 2Few
following inclusion .
relationships. .7
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New Results - Polynomial Ceiling

2N/poly = 2Few/poly = 2U/poly

When underlying 2-
way 1nfa’s have
polynomial ceilings,
the defined 6
complexity classes
satisfy the following

Inclusion relationships.

2ReachFew/poly
2ReachFewU/poly

2ReachU/poly

2D/poly

proper
inclusion
inclusion

|




Case of Other Celings

« Here are additional results for the two-way case.

* log celling
» 2N/log = 2D/log
e supexp ceiling

» For any C,De{ D, ReachU, ReachFewU, ReachFew,
U, FewU, Few, N },

2C/supexp c 2D < 2C c 2D,



V. Challenging Open Questions

1. Challenging Open Questions



Challenging Open Questions

 There are many open problems associated with the
topics of today’s talk.

* Here, | list a few general questions.

1. Is it true that 1ReachFew < 1FewU?

2. lIs it true that 2N/poly = 2ReachFew/poly?
3. lIs it true that 2N < 2DPD?

\ 2DPD =

pushdown
version of 2D
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